Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Coatings
Clear
  • Modeling Thermocouple Placement in a CUBI Test Fixture

    Abstract: This report describes an effort to model the response of temperature thermocouples mounted on a multisurface CUBI test fixture as a means to document potential thermocouple error sources. (CUBI is a euphemistic term that describes an assembly of contiguous cubic or rectangular solids.) The thermal solver within the commercially available Multi-Service Electro-Optical Signature (MuSES) Infrared (IR) was employed for modeling and analysis. Modeling was divided between the development of models to study individual temperature sensors and the incorporation of many such sensors into a full-up CUBI apparatus. The MuSES model of the simple plate in replicating analytic results to a high degree of accuracy, thus validating the MuSES solver. Additionally, MuSES modeled a CUBI fixture as a 2D shell in an outdoor environment. This model was run with and without attached sensors. The difference in temperature of a particular sensor and of the underlying CUBI surface with the sensor absent provided a prediction of the measurement artifact introduced by that sensor.
  • Influence of Chemical Coatings on Solar Panel Performance Snow Accumulation

    Abstract: Solar panel performance can be impacted when panel surfaces are coated with substances like dust, dirt, snow, or ice that scatter and/or absorb light and may reduce efficiency. As a consequence, time and resources are required to clean solar panels during and after extreme weather events or whenever surface coating occurs. Treating solar panels with chemical coatings that shed materials may decrease the operating costs associated with solar panel maintenance and cleaning. This study investigates three commercial coatings for use as self-cleaning glass technologies. Optical and thermal properties (reflectivity, absorption, and transmission) are investigated for each coating as well as their surface wettability and particle size. Incoming solar radiation was continuously monitored and snow events were logged to estimate power production capabilities and surface accumulation for each panel. In terms of power output, the commercial coatings made little impact on overall power production compared to the control (uncoated) panels. This was attributable to the overall high transmission, low absorption, and low reflection of each of the commercial coatings, making their presence on the surface of solar panels have minimal impact besides to potentially shed snow While the coatings made no observable difference to increase power production compared to the control panels, the shedding results from video monitoring suggest both the hydrophilic or hydrophobic test coatings decreased snow accumulation to a greater extent than the control panels (uncoated). Controlling the wettability properties of the solar panel surfaces has the potential to limit snow accumulation when compared to uncoated panel surfaces.
  • Performance of Active Porcelain Enamel Coated Fibers for Fiber-Reinforced Concrete: The Performance of Active Porcelain Enamel Coatings for Fiber-Reinforced Concrete and Fiber Tests at the University of Louisville

    Abstract: A patented active porcelain enamel coating improves both the bond between the concrete and steel reinforcement as well as its corrosion resistance. A Small Business Innovation Research (SBIR) program to develop a commercial method for production of porcelain-coated fibers was developed in 2015. Market potential of this technology with its steel/concrete bond improvements and corrosion protection suggests that it can compete with other fiber reinforcing systems, with improvements in performance, durability, and cost, especially as compared to smooth fibers incorporated into concrete slabs and beams. Preliminary testing in a Phase 1 SBIR investigation indicated that active ceramic coatings on small diameter wire significantly improved the bond between the wires and the concrete to the point that the wires achieved yield before pullout without affecting the strength of the wire. As part of an SBIR Phase 2 effort, the University of Louisville under contract for Ceramics, Composites and Coatings Inc., proposed an investigation to evaluate active enamel-coated steel fibers in typical concrete applications and in masonry grouts in both tension and compression. Evaluation of the effect of the incorporation of coated fibers into Ultra-High Performance Concrete (UHPC) was examined using flexural and compressive strength testing as well as through nanoindentation.