Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Algorithms--Evaluation
  • A Review of Empirical Algorithms for the Detection and Quantification of Harmful Algal Blooms Using Satellite-Borne Remote Sensing

    Abstract: Harmful Algal Blooms (HABs) continue to be a global concern, especially since predicting bloom events including the intensity, extent, and geographic location, remain difficult. However, remote sensing platforms are useful tools for monitoring HABs across space and time. The main objective of this review was to explore the scientific literature to develop a near-comprehensive list of spectrally derived empirical algorithms for satellite imagers commonly utilized for the detection and quantification HABs and water quality indicators. This review identified the 29 WorldView-2 MSI algorithms, 25 Sentinel-2 MSI algorithms, 32 Landsat-8 OLI algorithms, 9 MODIS algorithms, and 64 MERIS/Sentinel-3 OLCI algorithms. This review also revealed most empirical-based algorithms fell into one of the following general formulas: two-band difference algorithm (2BDA), three-band difference algorithm (3BDA), normalized-difference chlorophyll index (NDCI), or the cyanobacterial index (CI). New empirical algorithm development appears to be constrained, at least in part, due to the limited number of HAB-associated spectral features detectable in currently operational imagers. However, these algorithms provide a foundation for future algorithm development as new sensors, technologies, and platforms emerge.
  • Evaluation of Automated Feature Extraction Algorithms Using High-resolution Satellite Imagery Across a Rural-urban Gradient in Two Unique Cities in Developing Countries

    Abstract: Feature extraction algorithms are routinely leveraged to extract building footprints and road networks into vector format. When used in conjunction with high resolution remotely sensed imagery, machine learning enables the automation of such feature extraction workflows. However, many of the feature extraction algorithms currently available have not been thoroughly evaluated in a scientific manner within complex terrain such as the cities of developing countries. This report details the performance of three automated feature extraction (AFE) datasets: Ecopia, Tier 1, and Tier 2, at extracting building footprints and roads from high resolution satellite imagery as compared to manual digitization of the same areas. To avoid environmental bias, this assessment was done in two different regions of the world: Maracay, Venezuela and Niamey, Niger. High, medium, and low urban density sites are compared between regions. We quantify the accuracy of the data and time needed to correct the three AFE datasets against hand digitized reference data across ninety tiles in each city, selected by stratified random sampling. Within each tile, the reference data was compared against the three AFE datasets, both before and after analyst editing, using the accuracy assessment metrics of Intersection over Union and F1 Score for buildings and roads, as well as Average Path Length Similarity (APLS) to measure road network connectivity. It was found that of the three AFE tested, the Ecopia data most frequently outperformed the other AFE in accuracy and reduced the time needed for editing.