Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Microorganisms
Clear
  • Microbial Activity in Dust-Contaminated Antarctic Snow

    Abstract: During weather events, particles can accumulate on the snow near the Pegasus ice and Phoenix compacted-snow Runways at the US McMurdo Station in Antarctica. The deposited particles melt into the surface, initially forming steep-sided holes, which can widen into patches of weak and rotten snow and ice. These changes negatively impact the ice and snow runways and snow roads trafficked by vehicles. To understand the importance of microbes on this process, we examined deposited dust particles and their microbial communities in snow samples collected near the runways. Snow samples were analyzed at the Cold Regions Research and Engineering Laboratory where we performed a respiration study to measure the microbial activity during a simulated melt, isolated microorganisms, examined particle-size distribution, and performed 16S rRNA gene sequencing. We measured higher levels of carbon dioxide production from a sample containing more dust than from a sample containing less dust, a finding consistent with viable dust-associated microbial communities. Additionally, eleven microorganisms were isolated and cultured from snow samples containing dust particles. While wind patterns and satellite images suggest that the deposited particles originate from nearby Black Island, comparisons of the particle size and chemical composition were inconclusive.
  • Microscale Dynamics between Dust and Microorganisms in Alpine Snowpack

    ABSTRACT:  Dust particles carry microbial and chemical signatures from source regions to deposition regions. Dust and its occupying microorganisms are incorporated into, and can alter, snowpack physical properties including snow structure and resultant radiative and mechanical properties that in turn affect larger-scale properties, including surrounding hydrology and maneuverability. Microorganisms attached to deposited dust maintain genetic evidence of source substrates and can be potentially used as bio-sensors. The objective of this study was to investigate the impact of dust-associated microbial deposition on snowpack and microstructure. As part of this effort, we characterized the microbial communities deposited through dust transport, examined dust provenance, and identified the microscale location and fate of dust within a changing snow matrix. We found dust characteristics varied with deposition event and that dust particles were generally embedded in the snow grains, with a small fraction of the dust particles residing on the exterior of the snow matrix. Dust deposition appears to retard expected late season snow grain growth. Both bacteria and fungi were identified in the collected snow samples.