Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Ocean waves--Mathematical models
Clear
  • Comparison of Run-Up Models with Field Data

    Abstract: Run-up predictions are inherently uncertain, owing to ambiguities in phase-averaged models and inherent complexities of surf and swash-zone hydrodynamics. As a result, different approaches, ranging from simple algebraic expressions to computationally intensive phase-resolving models, have been used in attempt to capture the most relevant run-up processes. Studies quantifiably comparing these methods in terms of physical accuracy and computational speed are needed as new observation technologies and models become available. The current study tests the capability of the new swash formulation of the Coastal Modeling System (CMS) to predict 1D run-up statistics (R2%) collected during an energetic 3 week period on sandy dune-backed beach in Duck, North Carolina. The accuracy and speed of the debut CMS swash formulation is compared with one algebraic model and three other numerical models. Of the four tested numerical models, the CSHORE model computed the results fastest, and the CMS model results had the greatest accuracy. All four numerical models, including XBeach in surfbeat and nonhydrostatic modes, yielded half the error of the algebraic model tested. These findings present an encouraging advancement for phase-averaged coastal models, a critical step towards rapid prediction for near-time deterministic or long-term stochastic guidance.
  • altWIZ: A System for Satellite Radar Altimeter Evaluation of Modeled Wave Heights

    Purpose: This Coastal and Hydraulics Engineering Technical Note (CHETN) describes the design and implementation of a wave model evaluation system, altWIZ, which uses wave height observations from operational satellite radar altimeters. The altWIZ system utilizes two recently released altimeter databases: Ribal and Young (2019) and European Space Agency Sea State Climate Change Initiative v.1.1 level 2 (Dodet et al. 2020). The system facilitates model evaluation against 1 Hz1 altimeter data or a product created by averaging altimeter data in space and time around model grid points. The system allows, for the first time, quantitative analysis of spatial model errors within the U.S. Army Corps of Engineers (USACE) Wave Information Study (WIS) 30+ year hindcast for coastal United States. The system is demonstrated on the WIS 2017 Atlantic hindcast, using a 1/2° basin scale grid and a 1/4° regional grid of the East Coast. Consistent spatial patterns of increased bias and root-mean-square-error are exposed. Seasonal strengthening and weakening of these spatial patterns are found, related to the seasonal variation of wave energy. Some model errors correspond to areas known for high currents, and thus wave-current interaction. In conjunction with the model comparison, additional functions for pairing altimeter measurements with buoy data and storm tracks have been built. Appendices give information on the code access (Appendix I), organization and files (Appendix II), example usage (Appendix III), and demonstrating options (Appendix IV).