Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: humic acid
  • Properties and Mechanisms for PFAS Adsorption to Aqueous Clay and Humic Soil Components

    Abstract: The proliferation of poly- and perfluorinated alkyl substances (PFASs) has resulted in global concerns over contamination and bioaccumulation. PFAS compounds tend to remain in the environment indefinitely, and research is needed to elucidate the ultimate fate of these molecules. We have investigated the model humic substance and model clay surfaces as a potential environmental sink for the adsorption and retention of three representative PFAS molecules with varying chain length and head groups. Utilizing molecular dynamics simulation, we quantify the ability of pyrophyllite and the humic substance to favorably adsorb these PFAS molecules from aqueous solution. We have observed that the hydrophobic nature of the pyrophyllite surface makes the material well suited for the sorption of medium- and long-tail PFAS moieties. Similarly, we find a preference for the formation of a monolayer on the surface for long-chain PFAS molecules at high concentration. Furthermore, we discussed trends in the adsorption mechanisms for the fate and transport of these compounds, as well as potential approaches for their environmental remediation.
  • Computational Investigation on Interactions between Some Munition Compounds and Humic Substances

    Note: This document was originally published as a journal article or conference proceeding. The link and document will be accessible after a 12-month embargo expires (December 14, 2021 for this document). For more information, see "Frequently Asked Questions on Public Access to Federally Funded Journal Articles" at Abstract: Humic acid substances (HAs) in natural soil and sediment environments affect the retention and degradation of insensitive munition compounds and legacy high explosives (MCs): 2,4-dinitroanisole (DNAN) DNi−NH4+, N-methyl-p-nitroaniline (nMNA), 1-nitroguanidine (NQ), 3-nitro-1,2,4-triazol-5-one (NTO; neutral and anionic forms), 2,4,6-trinitroto-luene (TNT), and 1,3,5-trinitro-1,3,5-triazinane (RDX). A humic acid mode compound has been considered using molecular dynamics, thermodynamic integration, and density functional theory to characterize the munition binding ability, ionization potential, and electron affinity compared to that in the water solution. Humic acids bind most compounds and act as both a sink and source for electrons. Ionization potentials suggest that HAs are more susceptible to oxidation than the MCs studied. The electron affinity of HAs is very conformation-dependent and spans the same range as the munition compounds. When HAs and MCs are complexed, the HAs tend to radicalize first, thus buffering MCs against reductive as well as oxidative attacks.