Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Soil stabilization
  • Performance of Army Corps of Engineers Mat System Using Anchorless Connections: A Follow-on Study of Site Stabilization for the Improved Ribbon Bridge Bridge Supplemental Set

    Abstract: The US Army Engineer Research and Development Center conducted testing of the Army Corps of Engineers mat system with improved anchorage and connection hardware. Low-profile screw anchors replaced the ground anchorage of the existing system to reduce wear to tracks and wheels of vehicles while trafficking the system. Anchorless connections allowed the system to be placed over soils where the use of screw anchorage would be obstructed or would cause hazards to trafficking vehicles. Test tracks were constructed to evaluate the matting system with new anchorage and connection hardware over three different soils of weak sand and clay. Channelized traffic was applied to the test tracks using a loaded common bridge transporter. Performance of the updated system was evaluated with respect to results from previous testing, indicating that the improved anchorage and connection hardware increased the versatility of the matting system without sacrificing system performance.
  • Review of Regressive Channel Erosion and Grade Control Options on the Rio Coca, Ecuador

    Purpose: The US Army Corps of Engineers (USACE) is assisting the Ecuadorian state-run Corporación Eléctrica del Ecuador (CELEC) in addressing a water resource issue involving regressive channel erosion on the Rio Coca. Reconnaissance of the site was completed the week of 21 February 2022; parts of the river system were viewed to determine if improvements could be made to the current grade control structure (GCS) mitigation plan for reducing channel erosion and stabilizing the river system downstream of the Coca Coda Sinclair (CCS) Dam. The Rio Coca is a tributary to the Amazon River system in South America. It originates on the east side of the Andes Mountains and generally flows from southwest to northeast through the project area and then turns and flows east into the Amazon basin (Figure 1).* The Rio Coca valley is a current example of how damaging regressive erosion can be to a fluvial system (Figure 2).
  • The Use of Native Vegetation for Structural Stability in Dredged Material Placement Areas: A Case Study of Beneficial Use Site 4A, Chocolate Bayou, Brazoria County, Texas

    PURPOSE: This technical note is the third in a series about using native plant communities to enhance dredge material placement areas (DMPAs), confined disposal facilities (CDFs), and projects where dredged sediments are used for various engineering purposes. DMPAs and CDFs occur in numerous locations spanning different geographic locations nationwide. Oftentimes, these containment dikes are constructed using earthen materials. The materials are either barged in from an off-site location or obtained on-site from new or virgin materials, consisting of heavy clay particles and sediments removed from the nearby channel. In the Gulf Coast region of the United States, new or virgin materials are obtained during channel deepening activities using mechanical or hydraulic dredging methods. Examples of these dredging methods include hopper dredge, pipeline dredge, and excavator or bucket dredge. When materials are considered suitable for beneficial use purposes, and following environmental compliance, the materials are often used to construct containment dikes in DMPAs and CDFs. The project site used in this study—Beneficial Use Site 4A (BUS 4A)—used dredged material during its construction and has periodically received dredged material to maintain its target elevation of 2 ft (0.67 m) above the mean lower low water; hence, this site presents an opportunity for use as a demonstration study. Project goals include (1) demonstrating the use of native plant communities to provide structural stability, (2) introducing targeted vegetation establishment on DMPAs and CDFs as a management strategy to improve engineering and environmental outcomes, and (3) providing technology transfer to the U.S. Army Corps of Engineers (USACE) districts through hands-on planting techniques and installation of natural material (in this demonstration, coir logs).
  • The Use of Native Vegetation and Natural Materials in Shoreline Stabilization: A Case Study of Bubble Gum Beach, Rehoboth Beach, Delaware

    PURPOSE: This technical note is the fourth in a series about using native plant communities to achieve engineering and ecological purposes such as shoreline stabilization, structural enhancements, habitat creation, and ecosystem development. In this series, we demonstrate the utility of natural materials (specifically, native vegetation, oyster reefs, and coir logs) in living shoreline projects. Plant species and plant communities play critical roles in wave attenuation and sediment accretion in coastal areas. The application of vegetation in the coastal areas, especially on the East and Gulf Coasts, has focused heavily on the creation of living shorelines—serving both environmental and engineering purposes. This technical note documents the workshop conducted by the US Army Engineering Research and Development Center (ERDC) and hosted by the US Army Corps of Engineers’ (USACE) Philadelphia District (NAP) and Center for the Inland Bays. The goals of this technical note are (1) to demonstrate the application of native plant communities, oyster shells, and coir (coconut) materials and their installation techniques along shorelines to the engineering community; (2) to demonstrate how targeted vegetation establishment can facilitate ecosystem development along shorelines to improve engineering and environmental outcomes; and (3) to provide native vegetation installation techniques for living shorelines projects’ purposes.
  • Evaluation of Cedar Tree Revetments for Bank Stabilization at the Locust Creek Conservation Area, Missouri: Quantifying Bank Erosion Volumes from Preproject to Postfailure

    Abstract: The US Army Corps of Engineers Regional Sediment Management (RSM) program funded research to assess the longevity and effectiveness of cedar tree revetments for sediment reduction. Between 1988 and 1997, the Missouri Department of Conservation (MDC) constructed multiple cedar tree revetments, plantings, and a grade-control structure at an experimental stream management area on Locust Creek within the Locust Creek Conservation Area (LCCA). For the first few years, MDC also replaced missing trees as needed. MDC monitored these sites with photographs and cross sections until 2004. This study evaluated bank stability on Locust Creek from 1970 to 2019 using aerial imagery, lidar, ground surveys, and a December 2019 site visit to estimate the areal change in streambanks and the volume of sediment eroded over the years. Based on their dates of construction, the project compared preproject, with-project, and postfailure conditions at each site. The project included cedar tree revetments, other hardwood revetments, plantings, and a grade-control structure. This research found a 50% to 64% reduction in erosion for approximately 14 years. As of December 2019, all tree revetments had failed, and banks were bare and steep. The grade-control structure remained intact and continued to stabilize bed and banks immediately upstream.
  • Supporting Bank and Near-bank Stabilization and Habitat Using Dredged Sediment: Documenting Best Practices

    Abstract: In-water beneficial use of dredged sediment provides the US Army Corps of Engineers (USACE) the opportunity to increase beneficial use while controlling costs. Beneficial use projects in riverine environments include bank and near-bank placement, where sediments can protect against bank erosion and support habitat diversity. While bank and near-bank placement of navigation dredged sediment to support river-bank stabilization and habitat is currently practiced, documented examples are sparse. Documenting successful projects can support advancing the practice across USACE. In addition, documentation identifies data gaps required to develop engineering and ecosystem restoration guidance using navigation-dredged sediment. This report documents five USACE and international case studies that successfully applied these practices: Ephemeral Island Creation on the Upper Mississippi River; Gravel Island Creation on the Danube River; Gravel Bar Creation on the Tombigbee River; Wetland Habitat Restoration on the Sacramento-San Joaquin River Delta; and Island and Wetland Creation on the Lower Columbia River Estuary. Increased bank and near-bank placement can have multiple benefits, including reduced dredge volumes that would otherwise increase as banks erode, improved sustainable dredged sediment management strategies, expanded ecosystem restoration opportunities, and improved flood risk management. Data collected from site monitoring can be applied to support development of USACE engineering and ecosystem restoration guidance.
  • Corrosion and Performance of Dust Palliatives: Laboratory and Field Studies

    Abstract: This report details laboratory and field experiments on BioPreferred® dust suppressants to assess performance and corrosion characteristics. Numerous bio-based dust suppressant products are marketed, but little data are available to assess performance for dust abatement and corrosion of common metals. A laboratory study used an air impingement device and the Portable In-Situ Wind ERosion Laboratory (PI-SWERL) to simulate wind speeds similar to those in field conditions for rotary wing aircraft. Laboratory corrosion studies used metal coupons imbedded in soil treated with dust palliative. Field trials were conducted using ground vehicle traffic to minimize cost and lower safety concerns while increasing surface wear from repetitive traffic. These studies clearly show that bio-based products demonstrate low corrosion potential with similar dust abatement performance to synthetic-based agents.
  • Joint Rapid Airfield Construction (JRAC) Program 2004 Demonstration Project--Fort Bragg, North Carolina

    Abstract: This report describes the demonstration of technologies and procedures developed during April 2002 and May 2004 under the Joint Rapid Airfield Construction (JRAC) Program. The demonstration took place at Sicily Landing Zone (LZ) at Fort Bragg, NC, in July of 2004. The objective of the exercise was to demonstrate the procedures and technologies developed under the JRAC Program by rapidly building two parking aprons capable of supporting C-130 transport aircraft taxiing and parking operations. The exercise was conducted under continuous 24-hr operations to simulate a real-world rapid construction environment. Apron 1 (north apron) was constructed using two technologies, one-half being ACE™ Matting and the other half being a cement-polymer stabilized soil surface. Apron 2 (south apron) was constructed solely of a fiber-cement-stabilized soil system. Both aprons were treated with a polymer emulsion surface application to form a sealed surface against abrasion and water infiltration. The entire construction of both aprons required 76 hr, with Apron 1 finished in 48 hr. The construction of Apron 1 was validated by operation of a C-130 aircraft approximately 31 hr after completion with success and high praises from the aircraft flight crew on the stability and surface of the apron, as well as its dust-abating characteristics.
  • Rapid Airfield Damage Recovery Next Generation Backfill Technologies Comparison Experiment : Technology Comparison Experiment

    Abstract: The Rapid Airfield Damage Recovery (RADR) Next Generation Backfill Technology Comparison Experiment was conducted in July 2017 at the East Campus of the U.S. Army Engineer Research and Development Center (ERDC), located in Vicksburg, MS. The experiment evaluated three different crater backfill technologies to compare their performance and develop a technology trade-off analysis. The RADR next generation backfill technologies were compared to the current RADR standard backfill method of flowable fill. Results from this experiment provided useful information on technology rankings and trade-offs. This effort resulted in successful crater backfill solutions that were recommended for further end user evaluation.