Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Concrete construction
Clear
  • Full-Scale Evaluation of Saltwater Concrete for Airfield Pavement Construction and Repair

    Abstract: The US Navy has a need to rapidly construct concrete facilities onshore to support contingency operations. Mixing water for concrete is typically specified to be freshwater; however, in many scenarios there are limited amounts of freshwater available for construction. Thus, use of readily available saltwater would be advantageous. This project’s objective was to evaluate the suitability of saltwater as a replacement for freshwater for producing concrete airfield pavement under relevant operational scenarios. Three full-scale test sections were constructed, and performance was evaluated in the context of relatively short design life requirements. First, direct comparison slabs of freshwater and saltwater concrete were constructed and exposed to ambient environmental conditions for one year; periodic concrete strength measurements were made. Next, 8 in. thick and 11 in. thick saltwater concrete pavements were constructed then subjected to P-8 aircraft accelerated loading. Finally, four airfield damage repair techniques were executed using saltwater and subjected to accelerated P-8 aircraft loading. Saltwater concrete performance was found to be similar to freshwater concrete for all scenarios investigated. The overall conclusion was that saltwater can be used in place of freshwater for concrete airfield pavement construction and repair for short- to medium-term use (1–2 yr) with no meaningful impact to mission requirements.
  • Mat Sinking Unit Supply Study: Mississippi River Revetment

    Abstract: The Mississippi Valley Division (MVD) has maintained the Mississippi River banks for over 80 years. The Mat Sinking Unit (MSU), built in 1946, was considered state-of-the-art at the time. This system is still in operation today and has placed over 1,000 miles of Articulated Concrete Mats along the Mississippi River from Head of Passes, LA, to Cairo, IL. A new MSU has been designed and is expected to be fully mission capable and operational by the 2023 season, which is expected to increase the productivity from 2,000 squares/day up to 8,000 squares/day with double shifts and optimal conditions. This MSU supply study identifies and optimizes the supply chain logistics for increased production rates from the mat fields to the MSU. The production rates investigated for this effort are 2,000 squares/day, 4,000 squares/day, and 6,000 squares/day. RiskyProject® software, which utilizes a Monte Carlo method to determine a range of durations, manpower, and supplies based on logical sequencing is used for this study. The study identifies several potential supply and demand issues with the increased daily production rates. Distance to casting fields, number of barges, and square availability are the major issues to supply increased placement rates identified by this study.
  • Development of CORPS-STIF 1.0 with Application to Ultra-High Performance Concrete (UHPC)

    Abstract: This report introduces the first release of CORPS-STIF (Concrete Observations Repository and Predictive Software – Structural and Thermodynamical Integrated Framework). CORPS-STIF is envisioned to be used as a tool to optimize material constituents and geometries of mass concrete placements specifically for ultra-high performance concretes (UHPCs). An observations repository (OR) containing results of 649 mechanical property tests and 10 thermodynamical tests were recorded to be used as inputs for current and future releases. A thermodynamical integrated framework (TIF) was developed where the heat transfer coefficient was a function of temperature and determined at each time step. A structural integrated framework (SIF) modeled strength development in cylinders that underwent isothermal curing. CORPS-STIF represents a step toward understanding and predicting strength gain of UHPC for full-scale structures and specifically in mass concrete.
  • Automated Construction of Expeditionary Structures (ACES): Materials and Testing

    Abstract: Complex military operations often result in U.S. forces remaining at deployed locations for long periods. In such cases, more sustainable facilities are required to better accommodate and protect forward-deployed forces. Current efforts to develop safer, more sustainable operating facilities for contingency bases involve construction activities that require a redesign of the types and characteristics of the structures constructed, that reduce the resources required to build, and that decrease the resources needed to operate and maintain the completed facilities. The Automated Construction of Expeditionary Structures (ACES) project was undertaken to develop the capability to “print” custom-designed expeditionary structures on demand, in the field, using locally available materials with the minimum number of personnel. This work investigated large-scale automated “additive construction” (i.e., 3D printing with concrete) for construction applications. This report, which documents ACES materials and testing, is one of four technical reports, each of which details a major area of the ACES research project, its research processes, and its associated results. There major areas include System Requirements, Construction, and Performance; Energy and Modeling; Materials and Testing; Architectural and Structural Analysis.
  • Automated Construction of Expeditionary Structures (ACES): Energy Modeling

    Abstract: The need to conduct complex operations over time results in U.S. forces remaining in deployed locations for long periods. In such cases, more sustainable facilities are required to better accommodate and protect forward deployed forces. Current efforts to develop safer, more sustainable operating facilities for contingency bases involve construction activities that redesign the types and characteristics of the structures constructed, reduce the resources required to build, and reduce resources needed to operate and maintain the completed facilities. The Automated Construction of Expeditionary Structures (ACES) project was undertaken to develop the capability to “print” custom-designed expeditionary structures on demand, in the field, using locally available materials with the minimum number of personnel. This work investigated large-scale automated “additive construction” (i.e., 3D printing with concrete) for construction applications. This document, which documents ACES energy and modeling, is one of four technical reports, each of which details a major area of the ACES research project, its research processes, and associated results, including: System Requirements, Construction, and Performance; Energy and Modeling; Materials and Testing; Architectural and Structural Analysis.