Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: biodiversity
  • Standardized NEON Organismal Data for Biodiversity Research

    Abstract: Understanding patterns and drivers of species distribution and abundance, and thus biodiversity, is a core goal of ecology. Despite advances in recent decades, research into these patterns and processes is limited by a lack of standardized, high-quality, empirical data spanning large spatial scales and long time periods. The NEON fills this gap by providing freely available observational data generated during robust and consistent organismal sampling of several sentinel taxonomic groups within 81 sites distributed across the US and will be collected for at least 30 years. The breadth and scope of these data provide a unique resource for advancing biodiversity research. To maximize the potential of this opportunity, however, it is critical that NEON data be accessible and easily integrated into investigators’ workflows and analyses. To facilitate its use for biodiversity research and synthesis, we created a workflow to process and format NEON organismal data into the ecocomDP (ecological community data design pattern) format available through the ecocomDP R package; provided the standardized data as an R data package (neonDivData). We briefly summarize sampling designs and data wrangling decisions for the major taxonomic groups included. Our workflows are open-source so the biodiversity community may: add additional taxonomic groups; modify the workflow to produce datasets appropriate for their own analytical needs; and regularly update the data packages as more observations become available. Finally, we provide two simple examples of how the standardized data may be used for biodiversity research. By providing a standardized data package, we hope to enhance the utility of NEON organismal data in advancing biodiversity research and encourage the use of the harmonized ecocomDP data design pattern for community ecology data from other ecological observatory networks.
  • Embracing Biodiversity on Engineered Coastal Infrastructure through Structured Decision-Making and Engineering With Nature

    Abstract: Extreme weather variation, natural disasters, and anthropogenic actions negatively impact coastal communities through flooding and erosion. To safeguard coastal settlements, shorelines are frequently reinforced with seawalls and bulkheads. Hardened shorelines, however, result in biodiversity loss and environmental deterioration. The creation of sustainable solutions that engineer with nature is required to lessen natural and anthropogenic pressures. Nature-based solutions (NbS) are a means to enhance biodiversity and improve the environment while meeting engineering goals. To address this urgent need, the US Army Corps of Engineers (USACE) Engineering With Nature® (EWN) program balances economic, environmental, and social benefits through collaboration. This report presents how design and engineering practice can be enhanced through organized decision-making and landscape architectural renderings that integrate engineering, science, and NbS to increase biodiversity in coastal marine habitats. When developing new infrastructure or updating or repairing existing infrastructure, such integration can be greatly beneficial. Further, drawings and renderings exhibiting EWN concepts can assist in decision-making by aiding in the communication of NbS designs. Our practical experiences with the application of EWN have shown that involving landscape architects can play a critical role in effective collaboration and result in solutions that safeguard coastal communities while maintaining or enhancing biodiversity.