Publication Notices

Notifications of the Newest Publications and Reports Released by ERDC

Contact ERDC Library

601.501.7632 - text
601.634.2355 - voice


ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Shock waves
  • Multi-objective source scaling experiment

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) performed an experiment at a site near Vicksburg, MS, during May 2014. Explosive charges were detonated, and the shock and acoustic waves were detected with pressure and infrasound sensors stationed at various distances from the source, i.e., from 3 m to 14.5 km. One objective of the experiment was to investigate the evolution of the shock wave produced by the explosion to the acoustic wavefront detected several kilometers from the detonation site. Another objective was to compare the effectiveness of different wind filter strategies. Toward this end, several sensors were deployed near each other, approximately 8 km from the site of the explosion. These sensors used different types of wind filters, including the different lengths of porous hoses, a bag of rocks, a foam pillow, and no filter. In addition, seismic and acoustic waves produced by the explosions were recorded with seismometers located at various distances from the source. The suitability of these sensors for measuring low-frequency acoustic waves was investigated.
  • Optical and Acoustical Measurement of Ballistic Noise Signatures

    Abstract: Supersonic projectiles in air generate acoustical signatures that are fundamentally related to the projectile’s shape, size, and velocity. These characteristics influence various mechanisms involved in the generation, propagation, decay, and coalescence of acoustic waves. To understand the relationships between projectile shape, size, velocity, and the physical mechanisms involved, an experimental effort captured the acoustic field produced by a range of supersonic projectiles using both conventional pressure sensors and a schlieren imaging system. The results of this ongoing project will elucidate those fundamental mechanisms, enabling more sophisticated tools for detection, classification, localization, and tracking. This paper details the experimental setup, data collection, and preliminary analysis of a series of ballistic projectiles, both idealized and currently in use by the U.S. Military.
  • Geometric-Acoustics Analysis of Singly Scattered, Nonlinearly Evolving Waves by Circular Cylinders

    Abstract:  Geometric acoustics, or acoustic ray theory, is used to analyze the scattering of high-amplitude acoustic waves incident upon rigid circular cylinders. Theoretical predictions of the nonlinear evolution of the scattered wave field are provided, as well as measures of the importance of accounting for nonlinearity. An analysis of scattering by many cylinders is also provided, though the effects of multiple scattering are not considered. Provided the characteristic nonlinear distortion length is much larger than a cylinder radius, the nonlinear evolution of the incident wave is shown to be of much greater importance to the overall evolution than the nonlinear evolution of the individual scattered waves.