Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Sound-waves
Clear
  • Signal Power Distributions for Simulated Outdoor Sound Propagation in Varying Refractive Conditions

    Abstract: Probability distributions of acoustic signals propagating through the near-ground atmosphere are simulated by the parabolic equation method. The simulations involve propagation at four angles relative to the mean wind, with frequencies of 100, 200, 400, and 800 Hz. The environmental representation includes realistic atmospheric refractive profiles, turbulence, and ground interactions; cases are considered with and without parametric uncertainties in the wind velocity and surface heat flux. The simulated signals are found to span a broad range of scintillation indices, from near zero to exceeding ten. In the absence of uncertainties, the signal power (or intensity) is fit well by a two-parameter gamma distribution, regardless of the frequency and refractive conditions. When the uncertainties are included, three-parameter distributions, namely, the compound gamma or generalized gamma, are needed for a good fit to the simulation data. The compound gamma distribution appears preferable because its parameters have a straight forward interpretation related to the saturation and modulation of the signal by uncertainties.
  • The Influence of Mesoscale Atmospheric Convection on Local Infrasound Propagation

    Abstract: Infrasound—that is, acoustic waves with frequencies below the threshold of human hearing—has historically been used to detect and locate distant explosive events over global ranges (≥1,000 km). Simulations over these ranges have traditionally relied on large-scale, synoptic meteorological information. However, infrasound propagation over shorter, local ranges (0–100 km) may be affected by smaller, mesoscale meteorological features. To identify the effects of these mesoscale meteorological features on local infrasound propagation, simulations were conducted using the Weather Research and Forecasting (WRF) meteorological model to approximate the meteorological conditions associated with a series of historical, small-scale explosive test events that occurred at the Big Black Test Site in Bovina, Mississippi. These meteorological conditions were then incorporated into a full-wave acoustic model to generate meteorology-informed predictions of infrasound propagation. A series of WRF simulations was conducted with varying degrees of horizontal resolution—1, 3, and 15 km—to investigate the spatial sensitivity of these infrasound predictions. The results illustrate that convective precipitation events demonstrate potentially observable effects on local infrasound propagation due to strong, heterogeneous gradients in temperature and wind associated with the convective events themselves. Therefore, to accurately predict infrasound propagation on local scales, it may be necessary to use convection-permitting meteorological models with a horizontal resolution ≤4 km at locations and times that support mesoscale convective activity.
  • Phase-Modulated Rice Model for Statistical Distributions of Complex Signals

    Abstract: The basic Rice model is commonly used to describe complex signal statistics from randomly scattered waves. It correctly describes weak (Born) scattering, as well as fully saturated scattering, and smoothly interpolates between these extremes. However, the basic Rice model is unsuitable for situations involving scattering by random inhomogeneities spanning a broad range of spatial scales, as commonly occurs for sound scattering by turbulence in the atmospheric boundary layer and other scenarios. In such scenarios, the phase variations are often considerably stronger than those predicted by the basic Rice model. Therefore, the basic Rice model is extended to include a random modulation in the signal phase, which is attributable to the influence of the largest, most energetic inhomogeneities in the propagation medium. Various joint and marginal distributions for the complex signal statistics are derived to incorporate the phase-modulation effect. Approximations of the phase-modulated Rice model involving the Nakagami distribution for amplitude, and the wrapped normal and von Mises distributions for phase, are also developed and analyzed. The phase-modulated Rice model and various approximations are shown to greatly improve agreement with simulated data for sound propagation in the near-ground atmosphere.
  • Numerical Modeling of Mesoscale Infrasound Propagation in the Arctic

    Abstract: The impacts of characteristic weather events and seasonal patterns on infrasound propagation in the Arctic region are simulated numerically. The methodology utilizes wide-angle parabolic equation methods for a windy atmosphere with inputs provided by radiosonde observations and a high-resolution reanalysis of Arctic weather. The calculations involve horizontal distances up to 200 km for which interactions with the troposphere and lower stratosphere dominate. Among the events examined are two sudden stratospheric warmings, which are found to weaken upward refraction by temperature gradients while creating strongly asymmetric refraction from disturbances to the circumpolar winds. Also examined are polar low events, which are found to enhance negative temperature gradients in the troposphere and thus lead to strong upward refraction. Smaller-scale and topographically driven phenomena, such as low-level jets, katabatic winds, and surface-based temperature inversions, are found to create frequent surface-based ducting out to 100 km. The simulations suggest that horizontal variations in the atmospheric profiles, in response to changing topography and surface property transitions, such as ice boundaries, play an important role in the propagation.
  • Infrasound Propagation in the Arctic

    Abstract: This report summarizes results of the basic research project “Infrasound Propagation in the Arctic.” The scientific objective of this project was to provide a baseline understanding of the characteristic horizontal propagation distances, frequency dependencies, and conditions leading to enhanced propagation of infrasound in the Arctic region. The approach emphasized theory and numerical modeling as an initial step toward improving understanding of the basic phenomenology, and thus lay the foundation for productive experiments in the future. The modeling approach combined mesoscale numerical weather forecasts from the Polar Weather Research and Forecasting model with advanced acoustic propagation calculations. The project produced significant advances with regard to parabolic equation modeling of sound propagation in a windy atmosphere. For the polar low, interesting interactions with the stratosphere were found, which could possibly be used to provide early warning of strong stratospheric warming events (i.e., the polar vortex). The katabatic wind resulted in a very strong low-level duct, which, when combined with a highly reflective icy ground surface, leads to efficient long-distance propagation. This information is useful in devising strategies for positioning sensors to monitor environmental phenomena and human activities.
  • Extra-Wide-Angle Parabolic Equations in Motionless and Moving Media

    Abstract: Wide-angle parabolic equations (WAPEs) play an important role in physics. They are derived by an expansion of a square-root pseudo-differential operator in one-way wave equations, and then solved by finite-difference techniques. In the present paper, a different approach is suggested. The starting point is an extra-wide-angle parabolic equation (EWAPE) valid for small variations of the refractive index of a medium. This equation is written in an integral form, solved by a perturbation technique, and transformed to the spectral domain. The resulting split-step spectral algorithm for the EWAPE accounts for the propagation angles up to 90􀀁 with respect to the nominal direction. This EWAPE is also generalized to large variations in the refractive index. It is shown that WAPEs known in the literature are particular cases of the two EWAPEs. This provides an alternative derivation of the WAPEs, enables a better understanding of the underlying physics and ranges of their applicability, and opens an opportunity for innovative algorithms. Sound propagation in both motionless and moving media is considered. The split-step spectral algorithm is particularly useful in the latter case since complicated partial derivatives of the sound pressure and medium velocity reduce to wave vectors (essentially, propagation angles) in the spectral domain.
  • Multi-objective source scaling experiment

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) performed an experiment at a site near Vicksburg, MS, during May 2014. Explosive charges were detonated, and the shock and acoustic waves were detected with pressure and infrasound sensors stationed at various distances from the source, i.e., from 3 m to 14.5 km. One objective of the experiment was to investigate the evolution of the shock wave produced by the explosion to the acoustic wavefront detected several kilometers from the detonation site. Another objective was to compare the effectiveness of different wind filter strategies. Toward this end, several sensors were deployed near each other, approximately 8 km from the site of the explosion. These sensors used different types of wind filters, including the different lengths of porous hoses, a bag of rocks, a foam pillow, and no filter. In addition, seismic and acoustic waves produced by the explosions were recorded with seismometers located at various distances from the source. The suitability of these sensors for measuring low-frequency acoustic waves was investigated.
  • Geometric-Acoustics Analysis of Singly Scattered, Nonlinearly Evolving Waves by Circular Cylinders

    Abstract:  Geometric acoustics, or acoustic ray theory, is used to analyze the scattering of high-amplitude acoustic waves incident upon rigid circular cylinders. Theoretical predictions of the nonlinear evolution of the scattered wave field are provided, as well as measures of the importance of accounting for nonlinearity. An analysis of scattering by many cylinders is also provided, though the effects of multiple scattering are not considered. Provided the characteristic nonlinear distortion length is much larger than a cylinder radius, the nonlinear evolution of the incident wave is shown to be of much greater importance to the overall evolution than the nonlinear evolution of the individual scattered waves.