Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Perfluorinated chemicals
Clear
  • 2D Fluorinated Graphene Oxide (FGO)-Polyethyleneimine (PEI) Based 3D Porous Nanoplatform for Effective Removal of Forever Toxic Chemicals, Pharmaceutical Toxins, and Waterborne Pathogens from Environmental Water Samples

    Abstract: Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g−1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g−1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.
  • Internal Standard and Deuterated Solvent Selection: A Crucial Step in PFAS-based Fluorine-19 (¹⁹F) NMR Research

    Purpose: This work is vital because it provides researchers with a framework and rationale for selecting the best internal standard and deuterated solvent for their nuclear magnetic resonance (NMR) analysis of per- and polyfluoroalkyl substances (PFAS)-based compounds. Selecting the best internal standard and deuterated solvent will help to ensure that their results are accurate, precise, and sensitive. The internal standard that is chosen can significantly affect the accuracy, precision, sensitivity, and quantification of NMR measurements. Therefore, it is essential to carefully select an internal standard and a matching deuterated solvent that are well-suited for analyzing PFAS compounds.
  • Extraction and Analysis of Per- and Polyfluoroalkyl Substances (PFAS) from Meals Ready-to-Eat (MRE) Films Using GC-MS and LC-MS/MS

    OBJECTIVE: This work was in response to the Defense Logistic Agency’s (DLA) Subsistence Network Broad Agency Announcement, BAA-0003-16 addressing 2019 NDAA Section 329 that states packaging materials used for Meals Ready-to-Eat (MRE) that contact food products must be free of per- and polyfluoroalkyl substances (PFAS). This was addressed by determining the presence or absence of PFAS on MREs by extraction followed by gas chromatography mass spectrometry (GC-MS) and liquid chromatography tandem mass spectrometry (LC-MS/MS). Any samples positive for PFAS were quantitated using LC triple quadrupole (QqQ) MS at the US Army Engineering and Research Development Center (ERDC) and by high resolution quadrupole time-of-flight (qTOF) MS and GC-MS at Oregon State University (OSU).
  • Optimization of LC-MS/MS Parameters for Analysis of Per- and Polyfluoroalkyl Substances (PFAS)

    Purpose: Integrate US Environmental Protection Agency (USEPA) Method 537 on current instrumentation to provide per- and polyfluoroalkyl substances (PFAS) analytical capabilities for the US Army Engineer Research and Development Center (ERDC), US Army Corps of Engineers (USACE) and the Department of Defense (DoD).