Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Groundwater--Pollution
  • Bioaugmentation for Enhanced Mitigation of Explosives in Surface Soil

    Abstract: Residual munition constituents (MCs) generated from live-fire training exercises persist in soil and can migrate to groundwater, surface waters, and off-range locations. Techniques to mitigate this potential migration are needed. Since the MC hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be biodegraded, soil inoculation with RDX-degrading bacteria (i.e., bioaugmentation) was investigated as a means to reduce the migration potential of RDX. Metagenomic studies using contaminated soils have suggested that a greater diversity of bacteria are capable of RDX biodegradation. However, these bacteria remain uncultivated and are potentially a source of novel enzymes and pathways for RDX biodegradation. In situ soil cultivation of a novel soil array was used to isolate the uncultivated bacteria that had been inferred to degrade RDX. Approximately 10.5% of the bacteria isolated from the soil arrays degraded RDX by the aerobic denitration pathway. Of these, 26.5% were possibly novel species of RDX-degrading bacteria, based on 16S rRNA sequence similarity. Both cell encapsulation in hydrogels and coating cells onto granules of polymeric carbon sources were investigated as carrier/delivery approaches for soil inoculation. However, neither of these approaches could confirm that the observed RDX degradation was by the inoculated bacteria.
  • Microbial Dynamics of a Fluidized Bed Bioreactor Treating Perchlorate in Groundwater

    Abstract: Optimization of operation and performance of the groundwater treatment system regarding perchlorate removal at Longhorn Army Ammunition Plant (LHAAP) is dependent on specific conditions within the reactor and the larger groundwater treatment process. This study evaluated the microbial community compositions within the plant during periods of adequate perchlorate degradation, sub-adequate perchlorate degradation, and non-operating conditions. Factors affecting the performance of the LHAAP ground water treatment system (GWTS) perchlorate de-grading fluidized bed reactor (FBR) are identified and discussed. Isolation of the FBR from naturally occurring microbial populations in the groundwater was the most significant factor reducing system effectiveness. The microbial population within the FBR is highly susceptible to system upsets, which leads to declining diversity within the reactor. As designed, the system operates for extended periods without the desired perchlorate removal without intervention such as a seed inoculant. A range of modifications and the operation of the system are identified to increase the effectiveness of perchlorate removal at LHAAP.
  • Biopolymer Production in the Aquifer of a Groundwater Pump-and-Treat System

    Abstract: To establish the cause of filter clogging in the groundwater treatment system at Kirtland Air Force Base and assist in possible mitigation approaches.