Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Raman spectroscopy
  • A Comparison of Handheld Field Chemical Sensors for Soil Characterization with a Focus on LIBS

    Abstract: Commercially available handheld chemical analyzers for forensic applications have been available for over a decade. Portable systems from multiple vendors can perform X-ray fluorescence (XRF) spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and recently laser-induced breakdown spectroscopy (LIBS). Together, we have been exploring the development and potential applications of a multisensor system consisting of XRF, Raman, and LIBS for environmental characterization with a focus on soils from military ranges. Handheld sensors offer the potential to substantially increase sample throughput through the elimination of transport of samples back to the laboratory and labor-intensive sample preparation procedures. Further, these technologies have the capability for extremely rapid analysis, on the order of tens of seconds or less. We have compared and evaluated results from the analysis of several hundred soil samples using conventional laboratory bench top inductively coupled plasma atomic emission spectroscopy (ICP-AES) for metals evaluation and high-performance liquid chromatography (HPLC) and Raman spectroscopy for detection and characterization of energetic materials against handheld XRF, LIBS, and Raman analyzers. The soil samples contained antimony, copper, lead, tungsten, and zinc as well as energetic compounds such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-triazine (RDX), nitroglycerine (NG), and dinitrotoluene isomers (DNT). Precision, accuracy, and sensitivity of the handheld field sensor technologies were compared against conventional laboratory instrumentation to determine their suitability for field characterization leading to decisional outcomes.
  • Fusion of Spectral Data from Multiple Handheld Analyzers (LIBS, XRF and Raman) for Chemical Analysis and Classification of Soil

     Abstract:  An 18-month multidisciplinary project was undertaken by JRPlumer & Associates, LLC and four subcontractors that had three technical objectives: (i) to upgrade current handheld technology for chemical analysis by X-ray fluorescence spectroscopy (XRFS), Raman spectroscopy (RS), and laser-induced breakdown spectroscopy (LIBS); (ii) to design a multisensor system based on these technologies for the rapid, in-situ chemical analysis of soils and other materials of military interest; and (iii) to investigate the classification/discrimination performance benefit that might be achieved through advanced signal pre-processing and data fusion with XRFS, RS, and LIBS analyses acquired for four suites of natural soils. Accomplishments of the program in the latter area are described in this report.