Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Sand dunes
Clear
  • An Investigation into the Correlation Between Selected Coastal Protection Indices and Percent Residual Dune and Berm Volumes Following Coastal Storms

    Abstract: Morphometric indices describe the dimensions of a dune and berm profile and can serve as relative metrics of coastal protection. However, coastal vulnerability to storm damage also depends on storm, wave, sediment, and offshore characteristics. Recently, more elaborate non-morphometric indices have been proposed in an effort to account for these other factors. This study compares the correlation between these morphometric and non-morphometric indices and one measure of coastal protection, the ability of a dune and berm profile to resist storm-induced changes in volume. This study uses a numerical-simulation approach rather than an empirical approach because a sufficiently comprehensive set of observational data does not exist. A randomized sample of dune and berm profiles were generated at eight coastal locations. Using the cross-shore numerical model (CSHORE), storm-induced changes in dune and berm volume were simulated for storms of low to moderate severity. The correlation between the various prestorm indices and the percentage of prestorm dune and berm volume remaining after the storm was calculated at each location. Results show that no single index always exhibits a higher correlation with percent dune and berm volume remaining. However, some indices were far more likely than others to produce higher correlations.
  • Projecting the Longevity of Coastal Foredunes Under Stochastic Meteorological and Oceanographic Forcing

    Abstract: Coastal foredunes serve as critical buffers between the ocean and beach-adjacent infrastructure, yet these features are at increasing risk of destruction from future storms and changes in sea level. Quantifying potential future hazards to dunes is complicated by an inability to forecast the exact sequencing and magnitude of future oceanographic and meteorological forcings. We used a stochastic weather emulator capable of generating time series of wind and wave properties to force a reduced complexity morphologic model to assess potential accretional and erosional dune volume changes over the next century. Inclusion of background beach erosion rates and sea level changes instead drives more frequent net volumetric dune erosion. At decadal scales, volume changes of the dune are shown to be dominated by the magnitude of shoreline change rate in locations rapidly retreating. For stable and mildly eroding shorelines, shoreline changes and changes in the still water level influence timescales of dune destruction. Sets of probabilistic simulations are used to show gradual wind-driven sediment gains can compensate for episodic wave-driven losses over the long term. However, in the case of higher sea levels, more frequent dune collision results in less time for dune recovery between major storms.
  • Coastal Sand Dunes: A Review of Management Strategies for Dune Stabilization

    Abstract: The primary objective of this technical note is to provide a US-centric review on historic and current management approaches for dune stabilization efforts. This includes methods for promoting dune formation via natural aeolian processes, as well as more hands-on management approaches, including hybrid dune construction.
  • Engineering With Nature: Natural Infrastructure for Mission Readiness at U.S. Navy and Marine Corps Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at eight U.S. Navy and Marine Corps military installations to achieve increased resilience through natural infrastructure.
  • A Large-Scale Community Storm Processes Field Experiment: The During Nearshore Event Experiment (DUNEX) Overview Reference Report

    Abstract: The DUring Nearshore Event EXperiment (DUNEX) was a series of large-scale nearshore coastal field experiments focused on during-storm, nearshore coastal processes. The experiments were conducted on the North Carolina coast by a multidisciplinary group of over 30 research scientists from 2019 to 2021. The overarching goal of DUNEX was to collaboratively gather information to improve understanding of the interactions of coastal water levels, waves, and flows, beach and dune evolution, soil behavior, vegetation, and groundwater during major coastal storms that affect infrastructure, habitats, and communities. In the short term, these high-quality field measurements will lead to better understanding of during-storm processes, impacts and post-storm recovery and will enhance US academic coastal research programs. Longer-term, DUNEX data and outcomes will improve understanding and prediction of extreme event physical processes and impacts, validate coastal processes numerical models, and improve coastal resilience strategies and communication methods for coastal communities impacted by storms. This report focuses on the planning and preparation required to conduct a large-scale field experiment, the collaboration amongst researchers, and lessons learned. The value of a large-scale experiment focused on storm processes and impacts begins with the scientific gains from the data collected, which will be available and used for decades to come.
  • Coastal Resilience: Benefits of Wrack and Dune Systems and Current Management Practices

    Purpose: The purpose of this US Army Engineer Research and Development Center (ERDC) technical note (TN) is to review both the ecological and geomorphological impacts of wrack on dune systems and provide an overview of current beach dune and wrack management practices. As part of the US Army Corps Regional Sediment Management (RSM) Program, this TN also introduces a case study investigating wrack management solutions for dune stabilization.
  • Engineering With Nature®: Supporting Mission Resilience and Infrastructure Value at Department of Defense Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at seven military installations to achieve increased resilience through natural infrastructure.
  • PUBLICATION NOTICE: Evaluating Collection Parameters for Mobile Lidar Surveys in Vegetated Beach-Dune Settings

    Purpose: The goal of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to compare collection parameters and gridding techniques for mobile lidar surveys of beach-dune systems in the northern Outer Banks, NC.