Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Dredging--Management
Clear
  • Evaluating Beneficial Use in the 1998–2021 Sediment Placement Data with Updated Placement Categories

    Purpose: The objective of this study was to provide a comparable Beneficial Use (BU) to Disposal ratio for the data within the “historic” 1998–2021 Sediment Placement Data Viewer to the data within the 2022–Present Sediment Placement Data Viewer. In conjunction with this primary objective, a secondary target was to quantify a historic average volume of sediment placed by US Army Corps of Engineers (USACE) annually on a national scale.
  • PUBLICATION NOTICE: Utilizing Stream Flows to Forecast Dredging Requirements

    Abstract: In recent years, the United States Army Corps of Engineers (USACE) has spent an average of approximately a billion dollars annually for navigation channel maintenance dredging. To execute these funds effectively, USACE districts must determine which navigation channels are most in need of maintenance dredging each year. Traditionally, dredging volume estimates for Operations and Maintenance budget development are based on experiential knowledge and historic averages, with the effects of upstream, precipitation-driven streamflows considered via general-rule approximations. This study uses the Streamflow Prediction Tool, a hydrologic routing model driven by global weather forecast ensembles, and dredging records from the USACE Galveston District to explore relationships between precipitation-driven inland channel flow and subsequent dredged volumes in the downstream coastal channel reaches. Spatially based regression relationships are established between cumulative inland flows and dredged volumes. Results in the test cases of the Houston Ship Channel and the Sabine-Neches Waterway in Texas indicate useful correlations between the computed streamflow volumes and recorded dredged volumes. These relationships are stronger for channel reaches farther inland, upstream of the coastal processes that are not included in the precipitation-driven hydrologic model.