Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Snow water equivalent
Clear
  • Validation of Daily Snow Water Equivalent for a Watershed Statistics Tool

    Abstract: The Watershed Statistics tool is a tool currently being developed for the Remote Sensing and Geographic Information Systems Center of Expertise’s (RSGIS) Extreme Cold Weather web portal and will allow users to easily access and visualize snow water equivalent (SWE) data. The SWE data available on this tool are derived from passive microwave signals acquired by satellite through a technique known as enhanced passive microwave SWE. This analysis used available in situ SWE measurements from snow study sites in four watersheds across the United States and Canada to determine the accuracy of the data available on the tool at the watershed scale. In situ measurements of SWE were compared with the Watershed Statistics tool’s SWE data based on watershed, land cover, and elevation to determine causes if discrepancies between the satellite-based estimations on the tool and ground-based measurements. The extent to which the data available on the Watershed Statistics tool agreed with in situ measurements was highly variable. SWE data available on the Watershed Statistics tool agreed the least with ground-based measurements made at higher elevations and in areas with denser vegetation. The findings of this comparison are consistent with known limitations of the enhanced passive microwave SWE technique.
  • Stage Frequency Analysis from Snowmelt Runoff near Utqiaġvik, Alaska

    Abstract: For the village of Utqiaġvik, located at the North Slope of Alaska, a stone-armored revetment along the coastline is proposed to reduce coastal erosion. The inner drainage capacity of the revetment must be sufficient to handle seasonal runoff from snowmelt. For this effort, we investigated the snowmelt runoff and the hydraulic impact at the watershed outlet using numerical snow and hydraulic modeling of the study area. We validated the snow model results by comparing simulated snow water equivalent (SWE) values to field measurements. Additionally, the snow model was validated using satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) snow-covered area (SCA) products and time-lapse camera imagery during snowmelt. Our results indicate that the simulated SWE and snowmelt dates agree closely with measured values. The timing of modeled runoff onset was less accurate due to natural processes that delay snowmelt runoff such as snow dams and refreeze. The effect of the uncertainty from both runoff timing and volume was addressed with a Monte Carlo simulation of stage-frequency curves for the lagoons that receive snowmelt runoff. These stage-frequency curves can be used directly in the design of outlet, drainage or discharge structures for the proposed revetment.
  • Initial Data Collection from a Fiber-Optic-Based Dam Seepage Monitoring and Detection System

    Abstract: Visual inspection is the most used method to detect seepage at dams. Early detection can be difficult with this method, and use of appropriate real time monitoring could significantly increase the chances of recognizing possible failure. Seepages can be identified by analyzing changes in water and soil temperature. Optical fiber placed at the embankment’s downstream toe has been proven to be an efficient means of detecting real time changes at short intervals over several kilometers. This study aims to demonstrate how temperatures measured using fiber optic distributed sensing can be used to monitor seepage at Moose Creek Dam, North Pole, Alaska. The fiber optic cable portion of the monitoring system is installed along a section of the embankment where sand boils have occurred. Though no flood event occurred during this monitoring period, routine pumping tests of nearby relief wells resulted in an increase of soil and water temperature (up to 13°C) along a 100 m section where sand boils were detected during the 2014 flood events. Measurements during a flood event are expected to provide a quantitative assessment of seepage and its rate.
  • Summary of Ground-Based Snow Measurements for the Northeastern United States

    ABSTRACT: Snow is an important resource for both communities and ecosystems of the Northeastern United States. Both flood risk management and water supply forecasts for major municipalities, including New York City, depend on the collection of snowpack information. Therefore, the purpose of this study is to summarize all of the snowpack data from ground-based networks currently available in the Northeast. The collection of snow-depth and snow water equivalent information extends back several decades, and there are over 2,200 active sites across the region. Sites are distributed across the entire range of elevations in the region. The number of locations collecting snow information has increased substantially in the last 20 years, primarily from the expansion of the CoCoRaHS (Community Collaborative Rain, Hail, and Snow) network. Our summary of regional snow measurement locations provides a foundation for future studies and analysis, including a template for other regions of the United States.
  • PUBLICATION NOTICE: Site-Specific Case Studies for Determining Ground Snow Loads in the United States

    ABSTRACT:  The U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) has mapped ground snow loads for much of the United States. In some areas where extreme local variations preclude mapping on a national scale, instead of loads, “CS” is used to indicate that Case Studies are needed. This report and the accompanying spreadsheet, which contains the 15,104-station CRREL ground snow load database, provide the information needed to conduct Case Studies. When the latitude, longitude, and elevation of a site of interest are provided, the spreadsheet tabulates data available in the vicinity and generates plots that relate ground snow loads nearby to elevation. With this information, the ground snow load at the site of interest can be determined. This report uses 10 examples to illustrate the methodology and provides our answer and the comments we generate for each of these Case Studies and for 16 additional sites of interest, 8 of which have their answers “disguised” for practice purposes. CRREL has conducted over 1000 Case Studies upon request. Practicing structural engineers were involved in over 250 of them to verify that this methodology is ready to transfer to the design profession.