Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: IMX-101
Clear
  • Identifying Degradation Products Responsible for Increased Toxicity of UV-Degraded Insensitive Munitions

    Abstract: Degradation of insensitive munitions (IMs) by ultraviolet (UV) light has become a concern following observations that some UV-degradation products have increased toxicity relative to parent compounds in aquatic organisms. This investigation focused on the Army's IM formulation, IMX101, composed of three IM constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ). The IM constituents and IMX101 were irradiated in a UV photo-reactor and then administered to Daphnia pulex in acute (48 h) exposures comparing toxicities relative to the parent materials. UV-degradation of DNAN had little effect on mortality whereas mortality for UV-degraded NTO and NQ increased by factors of 40.3 and 1240, making UV-degraded NQ the principle driver of toxicity when IMX101 is UV-degraded. Toxicity investigations for specific products formed during UV-degradation of NQ, confirmed greater toxicity than the parent NQ for degradation products. Summation of the individual toxic units for the complete set of individually measured UV-degradation products identified for NQ only accounted for 25% of the overall toxicity measured in the exposures to the UV-degraded NQ product mixture. Given the underestimation of toxicity using the sum toxic units for the individually measured UV-degradation products of NQ, we conclude that: (1) other unidentified NQ degradation products contributed principally to toxicity and/or (2) synergistic toxicological interactions occurred among the NQ degradation product mixture that exacerbated toxicity.
  • PUBLICATION NOTICE: Environmental Analysis of Aqueous 3-Nitro-1,2,4-Triazol-5-One (NTO) by Ion Chromatography with Conductivity Detection

    Abstract:  The newly fielded insensitive high-explosive compound 3-nitro-1,2,4-triazol-5-one (NTO) is mobile in the environment due to its high water solubility and low affinity for soils. The weak acidity of NTO (pKa 3.67) presents a challenge to environmental analysis by high-performance liquid chromatography but enables direct separation by ion chromatography (IC). Here we developed an IC method for NTO in natural water, soil, and postdetonation residue. A gradient potassium hydroxide separation effectively resolved the inorganic anions (F−, Cl−, NO2−, Br−, SO42−, NO3−, and PO43−) and NTO in 18 minutes. Suppressed conductivity of aqueous NTO was linear from 10 µg/L to 10 mg/L with a detection limit of 3 µg/L and quantitation limit of 9 µg/L. Recoveries of NTO-spiked natural water samples were 93%–118% at concentrations of 30, 100, and 500 µg/L. Recoveries of NTO-spiked soil samples were 91%–114% using deionized water (DI) extraction. NTO was completely recovered with DI-extraction in two postdetonation residue samples of IMX-101 but only partially recovered (58% and 69%) in two higher-concentration residues, potentially due to incomplete dissolution of the energetic particle matrix. These results support IC for confirmation analysis of environmental samples and for screening natural water samples while simultaneously analyzing inorganic ions.