Publication Notices

Notifications of New Publications Released by ERDC

Contact Us






ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Tag: Geomorphology
  • Monitoring Geomorphology to Inform Ecological Outcomes Downstream of Reservoirs Affected by Sediment Release

    Abstract: Increasingly, reservoir managers are seeking techniques that improve sediment management while considering long-term sedimentation and reduced operational flexibility. These techniques, often termed sustainable sediment management, involve passing sediment through reservoirs and into downstream rivers. Conceptually, restoring sediment continuity can benefit ecosystem function by increasing floodplain connectivity, contributing to the heterogeneity of channel geomorphology, and supporting the continuity of nutrient cycling. However, when a change is made to operations, geomorphic changes may need to be monitored to document benefits and mitigate any unexpected effects of the change. This investigation develops a geomorphic monitoring plan for downstream reaches affected by sediment-release operations at reservoirs. The monitoring objectives are aligned with potential geomorphic change caused by changes to sediment supply and the associated effects on river function. A tiered approach is presented to explain the quality of information that can be assessed from increasing levels of data collection. A general conceptual model is described in which geomorphic data may be linked to physical habitat conditions and, therefore, ecological processes. The geomorphic monitoring plan for the Tuttle Creek Reservoir water injection dredging (WID) pilot project is presented as a case study. This technical note establishes a general framework for monitoring the design for sustainable sediment management in different ecological and geomorphic contexts.
  • Assessing Differences in the Wetland Functional Capacity of Wet Pine Flatwood Compensatory Mitigation Sites Managed with Prescribed Fire and Mechanical Mowing

    Abstract: This report assesses the functional capacity of wet pine flatwood wetland habitats in the Gulf Coastal region of the United States, with a specific focus on compensatory mitigation sites maintained using mowing or prescribed fire, or both, as understory management strategies. The use of mowing in lieu of prescribed fire treatments has been proposed for a variety of reasons, including when mitigation sites are located near residential areas or where fires pose a risk to private property and public safety. This study evaluates the effects of mechanized mowing on ecosystem functions by using the hydrogeomorphic (HGM) wetland functional-assessment method to compare mitigation sites managed by mowing to sites managed by prescribed-fire regimes. Assessing mowing as a vegetation-control strategy in lieu of prescribed-fire regimes provides valuable information that can improve the design and management of wet pine flatwoods mitigation sites throughout portions of the southeastern United States, where this wetland class occurs.
  • A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Forested Riverine Wetlands in Alluvial Valleys of the Piedmont Region of the United States

    Abstract: The Hydrogeomorphic (HGM) approach is used for developing and applying models for the site-specific assessment of wetland functions. It was initially designed for use in the context of the Clean Water Act Section 404 Regulatory Program permit review process to analyze project alternatives, minimize impacts, assess unavoidable impacts, determine mitigation requirements, and monitor the success of compensatory mitigation. However, a variety of other potential uses have been identified, including the design of wetland restoration projects, projecting ecological outcomes, developing success criteria and performance standards, and adaptive monitoring and management of wetlands. This guidebook provides an overview of the HGM approach including classification and characterization of the principal alluvial riverine wetlands identified in the Piedmont physiography. Eight potential subclasses of Piedmont wetlands, including Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, Footslope Seeps, Flats, Precipitation Depressions, and Fringe wetlands were recognized. However, the occurrence of Flats, Precipitation Depressions, and Fringe wetlands in the Piedmont, are uncommon and not generally associated with alluvial riverine systems which is the subject of this Guidebook. Detailed HGM assessment models and protocols are presented for the five most common Piedmont riverine subclasses: Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, and Footslope Seep. For each wetland subclass, the guidebook presents (a) the rationale used to select the wetland functions considered in the assessment process, (b) the rationale used to select assessment models, and (c) the functional index calibration curves developed from reference wetlands used in the assessment models. The guidebook outlines an assessment protocol for using the model variables and functional indices to assess each wetland subclass. The appendices provide field data collection forms. In addition, an automated spreadsheet model is provided to make calculations.
  • Geomorphic Metrics Used in FluvialGeomorph

    Abstract: FluvialGeomorph (FG) is a geographic information system-based geomorphic analysis toolkit that analyzes high-resolution terrain data to provide river-reach assessments for watershed studies. This report demonstrates the utility of FG to identify physical stream channel characteristics that are used to determine channel stability. The FG toolbox is a remote-sensing approach based on lidar data, designed to measure channel, floodplain, valley, and watershed metrics necessary for watershed assessments. Currently, channel slope and cross-sectional analysis and planform metrics are being evaluated with existing lidar data from different hydrophysiographic regions within the United States. Recent study areas include the Northwest, Southwest, South, Midwest, and upper Midwest of the United States.
  • Evaluation of Structural and Operational Alternatives to Optimize the Distribution of Water and Sediment in the Passes of the Mississippi River

    Abstract: Mississippi River shoaling and dredging processes in the vicinity of Head of Passes and in Southwest Pass were investigated. Existing rates of deposition and dredging were determined using near-daily eHydro bathymetric surveys, National Dredging Quality Management dredge operating data, and geospatial processing steps developed for this study. These surveys provide a means to characterize the highly dynamic and variable sedimentation patterns observed in the navigation channel. The HEC-6T one-dimensional numerical sedimentation model was used to evaluate possible modifications to the distribution of water and sediment in the Mississippi River near Head of Passes in an attempt to reduce shoaling in the navigation channel. The model was used to evaluate the effects of partial closures of several distributaries downstream from Venice and to evaluate the effects of channel widening and channel deepening adjacent to the Hopper Dredge Disposal Area at Head of Passes. In this study, various structural alternatives were compared to a base test that represented existing conditions. Sedimentation and dredging effects were projected 50 years into the future.
  • Geomorphic Assessment of the St. Francis River: Between Wappapello Lake and Lake City

    Abstract: The St. Francis River is a complex system that lies in the historic floodplain of the Mississippi and Ohio Rivers. The basin has undergone extensive anthropogenic modifications, including reservoir construction, large-scale channelization, and construction of leveed floodways. Several analyses of available gage data, lidar data, and historical research have provided a picture of geomorphic trends and an overall understanding of the river’s stability. The types of analysis used to determine trends included yearly low stage plots, stage-duration curves, specific gage analysis, water surface slopes, and stream power changes. The results from these analyses were synthesized to develop an overall assessment of the reach. Channel cutoffs resulted in a significant decrease in channel length and sinuosity and triggered geomorphic change throughout the river. Immediately following channelization, dramatic decreasing trends in stage were observed for Fisk and Dekyn’s Store, while St. Francis and Holly Island began to aggrade. Slopes and stream power were significantly increased for the upper portion of the study area and showed a decreasing trend for the lower reach.
  • Geomorphic Feature Extraction to Support the Great Lakes Restoration Initiative’s Sediment Budget and Geomorphic Vulnerability Index for Lake Michigan

    Purpose: This Coastal and Hydraulics Engineering technical note (CHETN) details a Geographic Information Systems (GIS) methodology to produce advanced lidar-derived datasets for use in a coastal erosion vulnerability analysis conducted by the US Army Corps of Engineers (USACE) and other federal partners for the Great Lakes Restoration Initiative (GLRI).
  • Landform Identification in the Chihuahuan Desert for Dust Source Characterization Applications: Developing a Landform Reference Data Set

    Abstract: ERDC-Geo is a surface erodibility parameterization developed to improve dust predictions in weather forecasting models. Geomorphic landform maps used in ERDC-Geo link surface dust emission potential to landform type. Using a previously generated southwest United States landform map as training data, a classification model based on machine learning (ML) was established to generate ERDC-Geo input data. To evaluate the ability of the ML model to accurately classify landforms, an independent reference landform data set was created for areas in the Chihuahuan Desert. The reference landform data set was generated using two separate map-ping methodologies: one based on in situ observations, and another based on the interpretation of satellite imagery. Existing geospatial data layers and recommendations from local rangeland experts guided site selections for both in situ and remote landform identification. A total of 18 landform types were mapped across 128 sites in New Mexico, Texas, and Mexico using the in situ (31 sites) and remote (97 sites) techniques. The final data set is critical for evaluating the ML-classification model and, ultimately, for improving dust forecasting models.
  • The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment

    NOTE: The Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment is a 9-volume series of reports that was produced under the direction of the Mississippi River Geomorphology & Potamology Program. An abstract from the main report, Volume 1, is listed below, along with the individual volume titles and links to the relevant reports. ABSTRACT: This is the main report of Old River, Mississippi River, Atchafalaya River, and Red River (OMAR) Technical Assessment. The primary objective of the OMAR Technical Assessment was to conduct a comprehensive evaluation that aimed to understand the impacts of former and potential changes to the system in the vicinity of the Old River Control Complex (ORCC) over time, the water and sediment delivery regime at the ORCC, and the effects to the river system surrounding the ORCC. Scenarios evaluated in this technical assessment were designed to investigate potential system responses to a wide range of possible operational alternatives and identify knowledge gaps in current understanding of system behavior. This report summarizes and synthesizes the individual reports detailing the investigations into specific aspects of the ORCC and the surrounding region.
  • Data Collection Tools for River Geomorphology Studies: LiDAR and Traditional Methods

    Abstract: The purpose of this review is to highlight LiDAR data usage for geomorphic studies and compare to other remote sensing technologies. This review further identifies survey efficiencies and issues that can be problematic in using LiDAR digital elevation models (DEMs) in completing surveys and geomorphic analysis. US Army Corps of Engineers (USACE) geospatial data collection guidance (EM 1110-1-1000) (USACE 2015) aligns with the American Society for Photogrammetry and Remote Sensing Positional Accuracy Standards for Digital Geospatial Data (ASPRS 2014). Geomorphic assessment technologies are rapidly evolving, and LiDAR data collection methods are at the forefront. The FluvialGeomorph (FG) toolbox, developed to support USACE watershed planning, is a recent example of the use of LiDAR high-resolution terrain data to provide a new, efficient approach for rapid watershed assessments (Haring et al. 2020; Haring and Biedenharn 2021). However, there are advantages and disadvantages in using LiDAR data compared to other remote sensing technologies and traditional topographic field survey methods.