Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Wetland ecology
Clear
  • Assessing Differences in the Wetland Functional Capacity of Wet Pine Flatwood Compensatory Mitigation Sites Managed with Prescribed Fire and Mechanical Mowing

    Abstract: This report assesses the functional capacity of wet pine flatwood wetland habitats in the Gulf Coastal region of the United States, with a specific focus on compensatory mitigation sites maintained using mowing or prescribed fire, or both, as understory management strategies. The use of mowing in lieu of prescribed fire treatments has been proposed for a variety of reasons, including when mitigation sites are located near residential areas or where fires pose a risk to private property and public safety. This study evaluates the effects of mechanized mowing on ecosystem functions by using the hydrogeomorphic (HGM) wetland functional-assessment method to compare mitigation sites managed by mowing to sites managed by prescribed-fire regimes. Assessing mowing as a vegetation-control strategy in lieu of prescribed-fire regimes provides valuable information that can improve the design and management of wet pine flatwoods mitigation sites throughout portions of the southeastern United States, where this wetland class occurs.
  • A Regional Guidebook for Applying the Hydrogeomorphic Approach to Assessing Wetland Functions of Forested Riverine Wetlands in Alluvial Valleys of the Piedmont Region of the United States

    Abstract: The Hydrogeomorphic (HGM) approach is used for developing and applying models for the site-specific assessment of wetland functions. It was initially designed for use in the context of the Clean Water Act Section 404 Regulatory Program permit review process to analyze project alternatives, minimize impacts, assess unavoidable impacts, determine mitigation requirements, and monitor the success of compensatory mitigation. However, a variety of other potential uses have been identified, including the design of wetland restoration projects, projecting ecological outcomes, developing success criteria and performance standards, and adaptive monitoring and management of wetlands. This guidebook provides an overview of the HGM approach including classification and characterization of the principal alluvial riverine wetlands identified in the Piedmont physiography. Eight potential subclasses of Piedmont wetlands, including Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, Footslope Seeps, Flats, Precipitation Depressions, and Fringe wetlands were recognized. However, the occurrence of Flats, Precipitation Depressions, and Fringe wetlands in the Piedmont, are uncommon and not generally associated with alluvial riverine systems which is the subject of this Guidebook. Detailed HGM assessment models and protocols are presented for the five most common Piedmont riverine subclasses: Headwater, Low- and Mid-gradient Riverine, Floodplain Depression, and Footslope Seep. For each wetland subclass, the guidebook presents (a) the rationale used to select the wetland functions considered in the assessment process, (b) the rationale used to select assessment models, and (c) the functional index calibration curves developed from reference wetlands used in the assessment models. The guidebook outlines an assessment protocol for using the model variables and functional indices to assess each wetland subclass. The appendices provide field data collection forms. In addition, an automated spreadsheet model is provided to make calculations.
  • PUBLICATION NOTICE: Baldcypress (Taxodium distichum) at the Wallisville Lake Project: A Review of Applicable Literature and Management Considerations

    Abstract: Changing hydropatterns within the Wallisville Lake Project, near the mouth of the Trinity River in Chambers and Liberty Counties, Texas, have the potential to alter baldcypress forest resiliency. Increasing water levels support saltwater barrier operations while maintaining navigation and recreational access. However, potential impacts of increased water levels on the baldcypress forests are of particular concern because these ecosystems provide unique ecological value and wildlife habitat. The maintenance, succession, and resiliency of baldcypress under various flooding, salinity, and inundation regimes remain poorly defined and pose challenges to resource managers. This report reviews available literature pertaining to salinity and inundation impacts to baldcypress forests. Specific emphasis is placed on the ecological effects of water quality and quantity on the health and persistence of baldcypress. The information gathered in this report is intended to supplement material in the Wallisville Lake Project Water Control Manual to improve management of baldcypress forest conditions and avoid negative ecological impacts. Additionally, this report provides management considerations designed to maintain or enhance baldcypress forests within the Wallisville Lake Project.