Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Numerical analysis
Clear
  • Comite Diversion Numerical Model Study

    Abstract: The Comite River diversion project is designed to reduce flooding along the Comite and Amite Rivers during flood events by diverting flow from the Comite River into the Mississippi River above Baton Rouge, Louisiana. The flow is diverted from the Comite River along a diversion canal to the Lilly Bayou Control structure. This structure allows the Comite River flow to enter the Mississippi River floodplain. A numerical model was created to evaluate the impacts associated with this addition of water to the Mississippi River. A 2D Adaptive Hydraulics numerical model was created to quantify the system impacts associated with the diverted flow in conjunction with possible system modifications to control the flow pathway. The impact of the diversion was determined to be heavily dependent on the flow and stage of the Mississippi River. At higher stages and flows, the flow diverted by the Lilly Bayou Control structure is negligible in relation to the much larger Mississippi River flow and therefore the impacts of the added flow are significantly less than at lower Mississippi River stages. At lower Mississippi River flows and stages, the added flow from the Lilly Bayou Control structure has a larger impact on the inundation due to the larger relative amount of diverted flow in relation to the Mississippi River. Ultimately, the diverted Comite River flow has some incremental increase in water levels at all Mississippi River stages.
  • Neural Ordinary Differential Equations for Rotorcraft Aerodynamics

    Abstract: High-fidelity computational simulations of aerodynamics and structural dynamics on rotorcraft are essential for helicopter design, testing, and evaluation. These simulations usually entail a high computational cost even with modern high-performance computing resources. Reduced order models can significantly reduce the computational cost of simulating rotor revolutions. However, reduced order models are less accurate than traditional numerical modeling approaches, making them unsuitable for research and design purposes. This study explores the use of a new modified Neural Ordinary Differential Equation (NODE) approach as a machine learning alternative to reduced order models in rotorcraft applications—specifically to predict the pitching moment on a rotor blade section from an initial condition, mach number, chord velocity and normal velocity. The results indicate that NODEs cannot outperform traditional reduced order models, but in some cases they can outperform simple multilayer perceptron networks. Additionally, the mathematical structure provided by NODEs seems to favor time-dependent predictions. We demonstrate how this mathematical structure can be easily modified to tackle more complex problems. The work presented in this report is intended to establish an initial evaluation of the usability of the modified NODE approach for time-dependent modeling of complex dynamics over seen and unseen domains.
  • Coastal Modeling System User’s Manual

    Abstract: The Coastal Modeling System (CMS) is a suite of coupled 2D numerical models for simulating nearshore waves, currents, water levels, sediment transport, morphology change, and salinity and temperature. Developed by the Coastal Inlets Research Program of the US Army Corps of Engineers, the CMS provides coastal engineers and scientists a PC-based, easy-to-use, accurate, and efficient tool for understanding of coastal processes and for designing and managing of coastal inlets research, navigation projects, and sediment exchange between inlets and adjacent beaches. The present technical report acts as a user guide for the CMS, which contains comprehensive information on model theory, model setup, and model features. The detailed descriptions include creation of a new project, configuration of model grid, various types of boundary conditions, representation of coastal structures, numerical methods, and coupled simulations of waves, hydrodynamics, and sediment transport. Pre- and postmodel data processing and CMS modeling procedures are also described through operation within a graphic user interface—the Surface Water Modeling System.
  • Use of Sediment Tracers to Evaluate Sediment Plume at Beaufort Inlet and Adjacent Beaches, North Carolina

    Abstract: This report documents a numerical modeling investigation on the transport of sediment material placed on designated disposal sites adjacent to Beaufort Inlet, North Carolina. Historical and newly collected wave and hydrodynamic data around the inlet are assembled and analyzed. The data sets are used to calibrate and validate a coastal wave, hydrodynamic and sediment transport model, the Coastal Modeling System. Model alternatives are developed corresponding to different material placement sites. Sediment transport and sediment plume distribution are evaluated within and around the immediate vicinity of the Beaufort Inlet estuarine system for a representative summer and winter month. Results of model simulations show that high flows occur along navigation channels and low flows occur outside the inlet in open ocean area. Sand materials placed in nearshore sites tend to be trapped in and move along navigation channels entering the inlet. In offshore placement sites the sediment plume shows slow spreading and no significant sand migration from its release locations. Simulations for the summer and winter month present similar distribution patterns of sediments originating from placement sites.
  • Simulated Barge Impacts on Fiber-Reinforced Polymers (FRP) Composite Sandwich Panels: Dynamic Finite Element Analysis (FEA) to Develop Force Time Histories to Be Used on Experimental Testing

    Abstract: The purpose of this study is to evaluate the dynamic response of fiber-reinforced polymer (FRP) composite sandwich panels subjected to typical barge impact masses and velocities to develop force time histories that can be used in controlled experimental testing. Dynamic analyses were performed on FRP composite sandwich panels using the finite element method software Abaqus/Explicit. The “traction-separation” law in the Abaqus software is used to define the cohesive surface interaction properties to evaluate the damage between FRP composite laminate layers as well as the core separation within the sandwich panels. Numerical models were developed to better under-stand the damage caused by barge impacts and the effects of impacts on the dynamic response of composite structures. Force, displacement, and velocity time histories were obtained with finite element modeling for several mass and velocity cases to develop experimental testing procedures for these types of structures.
  • Foundational Principles in the Development of AdH-SW3, the Three-Dimensional Shallow Water Hydrodynamics and Transport Module within the Adaptive Hydraulics/Hydrology Model

    Abstract: This report details the design and development of the three-dimensional shallow water hydrodynamics formulation within the Adaptive Hydraulics/Hydrology model (AdH-SW3) for simulation of flow and transport in rivers, estuaries, reservoirs, and other similar hydrologic environments. The report is intended to communicate principles of the model design for the interested and diligent user. The design relies upon several layers of consistency to produce a stable, accurate, and conservative model. The mesh design can handle rapid changes in bathymetry (e.g., steep-sided navigation channels in estuaries) and maintain accuracy in density-driven transport phenomena (e.g., thermal, or saline stratification and intrusion of salinity).
  • In Situ Visualization with Temporal Caching

    Abstract: In situ visualization is a technique in which plots and other visual analyses are performed in tandem with numerical simulation processes in order to better utilize HPC machine resources. Especially with unattended exploratory engineering simulation analyses, events may occur during the run, which justify supplemental processing. Sometimes though, when the events do occur, the phenomena of interest includes the physics that precipitated the events and this may be the key insight into understanding the phenomena that is being simulated. In situ temporal caching is the temporary storing of produced data in memory for possible later analysis including time varying visualization. The later analysis and visualization still occurs during the simulation run but not until after the significant events have been detected. In this article, we demonstrate how temporal caching can be used with in-line in situ visualization to reduce simulation run-time while still capturing essential simulation results.
  • Publication Notification: Distribution of the Two-Point Product of Complex Amplitudes in the Fully Saturated Scattering Regime

    Abstract:  This Letter considers probability density functions (pdfs) involving products of the complex amplitudes observed at two points (which may, in general, involve separations in space, time, or frequency) in conditions of fully saturated scattering. First, the pdf is derived for the product of the complex amplitude at one point with the conjugate of the complex amplitude at another point. It is shown that the real and imaginary parts of this product each have a variance gamma pdf. Second, expressions are derived for several joint pdfs involving complex amplitude products and powers at two points.
  • PUBLICATION NOTICE: New York/New Jersey Harbor Sedimentation Study: Numerical Modeling of Hydrodynamics and Sediment Transport

    Abstract: The New York/New Jersey Harbor (NYNJH) is a vital economic resource for both the local economy and the entire US economy due to the vast quantity of imports and exports handled by the numerous ports in this waterway. As with most ports, there is a significant, recurring expense associated with dredging the navigation channels to the authorized depths. In an effort to determine the impact of channel enlargements (“the project”) on dredging volumes, a numerical model study was performed. The advantage of a numerical model study is the ability to isolate individual system modifications and associated impacts in terms of dredging volumes. Five years (1985, 1995, 1996, 2011, and 2012) were simulated for both the with- and without-project conditions to determine the impact of the channel deepening on the dredging requirements for a wide range of meteorological conditions including storm events. The numerical model results were analyzed to provide insight into which locations will experience increased/decreased deposition and quantify the amount of increase/decrease for a given channel reach. The model results indicate a relatively minor increase in the total dredge volumes for the NYNJH with the increase being insignificant in comparison to the natural variability in dredge volumes across years.
  • PUBLICATION NOTICE: Hydraulic Analysis and Modeling of Navigation Conditions near the Mississippi River Bridges in Vicksburg, Mississippi

    Abstract: The River and Estuarine Engineering Branch of the Coastal and Hydraulics Laboratory developed a two-dimensional numerical model of the Mississippi River near Vicksburg, MS, using Adaptive Hydraulics to investigate navigation conditions through the Interstate 20 and Old Highway 80 Bridges reach. A focus of the study was determining the Marshall Brown Dikes impact to velocities and navigation through the reach. Proposed dikes, focused on improving currents, were also tested to determine if they are a feasible option to improve navigability through the bridges. A second proposed alternative, a levee to protect the articulated concrete mattress (ACM) field, was also simulated to determine if flood damage to the ACM field could be successfully reduced without negatively impacting navigation. Velocity data from 2008 throughout the reach of concern were used for validation along with water surface elevation data from 2008, 2011, 2016, and 2018. The Marshall Brown Dikes were shown to have a localized impact on velocities near the dikes, but the changes to the velocity downstream near the bridge were negligible for all tested flow rates. Simulations of the proposed dikes did not result in an improvement to navigation conditions, but the proposed levee was successful in decreasing velocities and depths over the ACM field.