Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Habitat (Ecology)--Mathematical models
Clear
  • Qualitative Habitat Evaluation Index for Louisville Streams (QHEILS)

    Purpose: Urban stream restoration typically involves multiple objectives addressing different aspects of ecosystem integrity, such as habitat provision, geomorphic condition, watershed connectivity, water quality, and land-use change. Multiple stream assessment tools and models have been developed and applied to inform restoration prioritization, planning, and design. Here, we present the Qualitative Habitat Evaluation Index for Louisville Streams (QHEILS, pronounced “quails”), which was designed as an interdisciplinary assessment method for urban streams in the Louisville, Kentucky, metropolitan region. The model adapts a regional habitat assessment procedure, the Qualitative Habitat Evaluation Index (QHEI), by incorporating additional processes related to geomorphic change and watershed connectivity. The QHEILS was developed in the context of the Beargrass Creek Ecosystem Restoration Feasibility Study, and it provides a rapid procedure for assessing multiobjective benefits associated with proposed restoration actions. This technical note summarizes the model and provides example applications within the Beargrass Creek watershed.
  • Ecological Model Development: Evaluation of System Quality

    PURPOSE: Ecological models are used throughout the US Army Corps of Engineers (USACE) to inform decisions related to ecosystem restoration, water operations, environmental impact assessment, environmental mitigation, and other topics. Ecological models are typically developed in phases of conceptualization, quantification, evaluation, application, and communication. Evaluation is a process for assessing the technical quality, reliability, and ecological basis of a model and includes techniques such as calibration, verification, validation, and review. In this technical note (TN), we describe an approach for evaluating system quality, which generally includes the computational integrity, numerical accuracy, and programming of a model or modeling system. Methods are presented for avoiding computational errors during development, detecting errors through model testing, and updating models based on review and use. A formal structure is proposed for model test plans and subsequently demonstrated for a hypothetical habitat suitability model. Overall, this TN provides ecological modeling practitioners with a rapid guide for evaluating system quality.
  • Ecological Model Development: Toolkit for interActive Modeling (TAM)

    Overview: Ecological models provide crucial tools for informing many aspects of ecosystem restoration and management, ranging from increasing understanding of complex ecological functions to prioritizing restoration sites and quantifying benefits for project reporting. The diversity of ecosystem types and restoration objectives often precludes the use of existing models; as such, model development is commonly required to inform restoration decision-making. Index-based habitat models are a common approach for assessing ecosystem condition. These models relate habitat quality to species’ distributions. Habitat suitability (quality) typically ranges on a scale from 0 to 1. Habitat models have been developed to assess habitat suitability for specific taxa, communities, or ecosystem functions. Restoration-project timelines often require that these models be developed rapidly and in conjunction with many external stakeholders or partners. Here, the Toolkit for interActive Modeling (TAM) is proposed as a platform for rapidly developing index-based models, particularly for US Army Corps of Engineers’ (USACE) ecosystem-restoration or mitigation planning processes. The TAM is a consistent quantitative framework that allows for development of a generic platform for index-based model development
  • PUBLICATION NOTICE: Proceedings from the US Army Corps of Engineers (USACE) and the National Oceanic and Atmospheric Administration (NOAA)–National Ocean Service (NOS): Ecological Habitat Modeling Workshop

    ABSRACT: This special report summarizes the activities of the Ecological Habitat Modeling Workshop held April 11–12, 2019, at the US Fish and Wildlife Service (USFWS) Blackwater National Wildlife Refuge Visitors Center in Cambridge, Maryland. The workshop guided 21 participants through the process of conceptualizing, quantifying, evaluating, and communicating ecological responses to inform guidance and management decisions for ecological restoration projects. Working in interactive groups, participants used the restoration work already in progress at nearby Swan Island as the basis for their model development. Over the course of the two-day workshop, participants learned the mechanics and challenges of applying modeling processes to shape the restoration of dynamic ecosystems. Through group work and brainstorming, they identified a number of benchmarks to assess restoration success and future resilience. To accommodate the changeable and often unpredictable natural events that can shape ecosystems, workshop facilitators emphasized building iterative, fluid ecological habitat models. Next steps include publishing this special report and scheduling a follow-up workshop that will include a site visit to Swan Island.
  • PUBLICATION NOTICE: Species Distribution Modeling of Ixodes scapularis and Associated Pathogens in States East of the Mississippi River

     Link: http://dx.doi.org/10.21079/11681/35615Report Number: ERDC/GRL TR-20-2Title: Species Distribution Modeling of Ixodes scapularis and Associated Pathogens in States East of the Mississippi RiverBy Kathleen V. Payne, Sean P. Griffin, Susan L. Lyon, Robin E. Lopez, and Nicole M. WayantApproved for Public Release; Distribution is Unlimited