Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Command detonation
Clear
  • Determination of Residual Low-Order Detonation Particle Characteristics from Composition B Mortar Rounds

    Empirical measurements of the spatial distribution, particle-size distribution, mass, morphology, and energetic composition of particles from low-order (LO) detonations are critical to accurately characterizing environ-mental impacts on military training ranges. This study demonstrated a method of generating and characterizing LO-detonation particles, previously applied to insensitive munitions, to 81 mm mortar rounds containing the conventional explosive formulation Composition B. The three sampled rounds had estimated detonation efficiencies ranging from 64% to 82% as measured by sampled residual energetic material. For all sampled rounds, energetic deposition rates were highest closer to the point of detonation; however, the mass per radial meter varied. The majority of particles (>60%), by mass, were <2 mm in size. However, the spatial distribution of the <2 mm particles from the point of detonation varied between the three sampled rounds. In addition to the particle-size-distribution results, several method performance observations were made, including command-detonation configurations, sampling quality control, particle-shape influence on laser-diffraction particle-size analysis (LD-PSA), and energetic purity trends. Overall, this study demonstrated the successful characterization of Composition B LO-detonation particles from command detonation through combined analysis by LD-PSA and sieving.
  • Determination of Residual Low-Order Detonation Particle Characteristics from IMX-104 Mortar Rounds

    ABSTRACT: The environmental fate and transport of energetic compounds on military training ranges are largely controlled by the particle characteristics of low-order detonations. This study demonstrated a method of command detonation, field sampling, laboratory processing, and analysis techniques for characterizing low-order detonation particles from 60 mm and 81 mm mortar rounds containing the insensitive munition formulation IMX-104. Particles deposited from three rounds of each caliber were comprehensively sampled and characterized for particle size, energetic purity, and morphology. The 60 mm rounds were command-detonated low order consistently (seven low-order detonations of seven tested rounds), with consumption efficiencies of 62%–80% (n = 3). The 81 mm rounds detonated low order inconsistently (three low-order detonations of ten tested rounds), possibly because the rounds were sourced from manufacturing test runs. These rounds had lower consumption efficiencies of 39%–64% (n = 3). Particle-size distributions showed significant variability between munition calibers, between rounds of the same caliber, and with distance from the detonation point. The study reviewed command-detonation configurations, particle transfer losses during sampling and particle-size analysis, and variations in the energetic purity of recovered particles. Overall, this study demonstrated the successful characterization of IMX-104 low-order detonation particles from command detonation to analysis.
  • PUBLICATION NOTICE: Sieve Stack and Laser Diffraction Particle Size Analysis of IMX-104 Low-Order Detonation Particles

     Link: http://dx.doi.org/10.21079/11681/35515Report Number: ERDC/CRREL TR-20-3Title: Sieve Stack and Laser Diffraction Particle Size Analysis of IMX-104 Low-Order Detonation ParticlesBy Matthew F. Bigl, Samuel A. Beal, Michael R. Walsh, Charles A. Ramsey, and Katrina M. BurchApproved for Public Release; Distribution is Unlimited February