Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Dredging spoil
Clear
  • Effects of Suspended Sediment on Aquatic Organisms: A Literature Review and Database Effort

    Abstract: The US Army Corps of Engineers (USACE) acknowledges that uncertainties and public perceptions regarding the effects of suspended sediment on aquatic organisms, particularly the concentration thresholds associated with harmful effects, present an ongoing challenge to its dredging mission. USACE is actively working to address these challenges through improved monitoring, research, and collaboration to support safer and more sustainable dredging practices. To help mitigate this uncertainty, 159 field- and laboratory-based studies describing the effects of sediment on aquatic organisms were reviewed and compiled in a database. No- and low-effect ecotoxicity data from this review were further analyzed to determine percentiles of effects data and species sensitivity distributions. The analysis indicated corals and freshwater crustaceans were most sensitive, followed by fish, while bivalves and marine crustaceans appeared to be the most tolerant of suspended sediment. This literature review provides a foundational framework for visualizing site-specific suspended sediment thresholds for effects concentrations associated with potential effects on aquatic species. It serves as a starting point for identifying critical data gaps for future research, layering in additional data, refining thresholds, and supporting more informed, site-specific decision-making moving forward.
  • Methods for 3D Printing Dredge Sediments to Sequester Contaminants

    Purpose: This technical note describes methods for preparing dredged sediment and commercially available clay for 3D printing, focusing on achieving optimal consistency and properties for successful extrusion. These methods establish best practices for using dredged sediments in 3D printing applications.
  • Examination of Activated Carbon Losses During Open Water Placement of Amended Dredged Material for Bioaccumulation Control

    Purpose: The purpose of this study was to evaluate the potential losses of both powdered and granular activated carbon (AC) resulting from open water placement of AC-amended dredged material to reduce contaminant bioaccumulation. The study examined the results of model predictions, a laboratory dump test, and a field demonstration project performed at the Ashtabula Lake Erie placement site.
  • Technical Recommendations for the Identification and Management of Potential Acid Sulfate Soils in an Ecological Restoration Context

    Abstract: Restoration projects are being implemented to address natural and anthropogenic threats to coastal wetlands, including increased inundation and historic land use alterations. The US Army Corps of Engineers (USACE) and other organizations introduce dredged sediments into coastal environments to increase elevation and stabilize marsh platforms. However, some dredged sediments either contain iron sulfide compounds (i.e., iron monosulfide [FeS] and pyrite [FeS₂]) or form them after application. Under aerobic conditions, FeS and FeS₂ can rapidly oxidize, which generates acidity that can dramatically lower the soil pH, impacts plant establishment, and threatens the success of wetland restoration projects. Recommendations are needed to properly manage iron sulfide containing materials through project design, screening, monitoring, and adaptive management. Tools and techniques exist to evaluate dredged sediments for the presence of FeS and FeS₂ prior to and following marsh sediment applications, and project design and construction approaches can minimize associated acidification risks. This report provides a framework for properly identifying and managing sediments containing iron sulfide minerals during wetland restoration projects. These technical recommendations provide dredged sediment beneficial use practitioners a decision support tool for the successful management of iron sulfide containing dredged sediments to increase the ecological function and sustainability of coastal wetlands.
  • Lower James River Sediment Transport Modeling: Jordan Point

    Abstract: US Army Corps of Engineers–Norfolk District (NAO) requested assistance from the US Army Engineer Research and Development Center (ERDC) to examine currently used placement sites within the James River, Virginia, initiative area, determine potential risk to critical environmental receptors during placement, and predict the life cycle of the placement sites. The focus of the analysis within this work is the Jordan Point placement site. The far-field, fate-transport modeling at Jordan Point shows relatively low maximum values of suspended sediment concentration (less than 40 mg/L) and deposition values (less than 0.2 cm). Material that is placed at Jordan Point appears to quickly disperse through the system, depositing in thin layers at specific areas. The life-cycle analysis performed for the Jordon Point placement site yielded an estimated useable project life of the Jordan Point placement sites of 26 years with an uncertainty of ±4 years. Analysis showed that 97% of the net sediment deposition in the navigation channel in proximity to this site is from the upper James River, 2% is from downstream sources, and 1% is from the two Jordan Point placement sites.
  • Beneficial Use of Dredged Material for Submerged Aquatic Vegetation Habitats: Overcoming Challenges and Seeking New Opportunities

    Purpose: There is a critical need to maintain and create conditions that are conducive for long-term survival of submerged aquatic vegetation (SAV) habitats, which provide multiple ecosystem services, using dredged material. This technical note (TN) was developed by the US Army Engineer Research and Development Center (ERDC)–Environmental Laboratory (EL) to address the specific challenges US Army Corps of Engineers (USACE) practitioners at the district and division level face that impede the development of beneficial use of dredged material (BUDM) projects to restore, conserve, and expand SAV habitats. Different ways to overcome these challenges and opportunities that should be further explored are also addressed. The information in this TN was synthesized from discussions at a virtual workshop for USACE practitioners.
  • Conway Lake Ecosystem Restoration: Soil Investigations to Support Engineering With Nature and Beneficial Use of Dredged Sediment

    Purpose: The purpose of this Technical Note is to describe Conway Lake ecosystem restoration adaptive management investigations to evaluate forest planting and soil response to three depths of fine sediment placed over a sand base.
  • A Review of Habitat Modeling Methods That Can Advance Our Ability to Estimate the Ecological Cobenefits of Dredge Material Placement

    Abstract: Beneficial use of dredged material (BUDM) has been a placement strategy within the USACE for over 35 years, with applications that aim to reduce navigation costs, increase flood protection, and generate ecological benefits. However, the tools and approaches used for estimating ecological benefits are often limited in comparison with those available to evaluate costs and more traditional economic benefits when moving and placing dredged material. There are statistical and mechanistic models that can aid in quantifying habitat benefits within the context of BUDM projects, but there is currently no USACE-approved process that facilitates the integration of these modeling approaches. The purpose of this document is to provide a comprehensive review of existing habitat-centric statistical and mechanistic models that may aide the USACE in identifying models most appropriate for quantifying potential ecological benefits and trade-offs at placement sites.
  • Next-Generation Water Quality Monitoring during Dredging Operations: Knowns, Unknowns, and Path Forward

    Abstract: Water quality monitoring data are routinely collected during dredging and placement operations to address various state and federal requirements, including water quality standards, with the intention of protecting ecosystem health. However, such efforts may be limited by the lack of a standardized national strategic focus and user-friendly streamlined interfaces to interpret the data. Inconsistencies in how and what data are collected and lack of consensus on scientifically backed biological-effects thresholds make it difficult to quantify potential dredging operations impacts (or lack thereof) both within individual projects over time and across multiple projects of differing characteristics. Summarized herein is an initial effort to define a scientifically backed path forward to improve the value of current and future water quality monitoring and management decisions based on water quality data collected. The provided turbidity data were generally below applicable state thresholds for two case studies but for a third case study did periodically exceed thresholds at depth. This includes providing rationale for strategic focus on the most relevant dredging operations and projects, based on three general site-specific data categorizations: (1) sediment type, (2) dredge type, and (3) ecosystem type.
  • Site Selection and Conceptual Designs for Beneficial Use of Dredged Material Sites for Habitat Creation in the Lower Columbia River

    Abstract: Channel maintenance in most major rivers throughout the United States requires ongoing dredging to maintain navigability. The US Army Corps of Engineers explores several options for placement based on sediment characteristics, material quantity, cost, operational constraints, and minimization of potential adverse effects to existing resources and habitat. It is a priority to beneficially reuse dredged sediments to create habitat and retain sediments within the river system whenever possible. Nonetheless, there can be discrepancies among state and federal resource agencies, landowners, tribes, and various other stakeholders about what constitutes a benefit and how those benefits are ultimately weighed against short- and long-term tradeoffs. This work leveraged prior Regional Sediment Management efforts building consensus among stakeholders on a suite of viable strategies for in-water placement in the lower Columbia River. The goal was to identify suitable locations for applying the various strategies to maximize habitat benefits and minimize potential adverse effects. A multistep site-selection matrix was developed with criteria accounting for existing site conditions, overall placement capacity, tradeoffs, long-term maintenance, cost, stakeholder concerns, and landscape principles in the context of other habitat restoration projects implemented in the lower river. Three highly ranked sites were selected for conceptual design and exemplify results of collaborative beneficial use implementation.