Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Nutrient pollution of water
Clear
  • Optimizing the Harmful Algal Bloom Interception, Treatment, and Transformation System (HABITATS)

    Abstract: Harmful algal blooms (HABs) continue to affect lakes and waterways across the nation, often resulting in environmental and economic damage at regional scales. The US Army Engineer Research and Development Center (ERDC) and collaborators have continued research on the Harmful Algal Bloom Interception, Treatment, and Transformation System (HABITATS) project to develop a rapidly deployable and scalable system for mitigating large HABs. The second year of the project focused on optimization research, including (1) development of a new organic flocculant formulation for neutralization and flotation of algal cells; (2) testing and initial optimization of a new, high-throughput biomass dewatering system with low power requirements; (3) development, design, assembly, and initial testing of the first shipboard HABITATS prototype; (4) execution of two field pilot studies of interception and treatment systems in coordination with the Florida Department of Environmental Protection and New York State Department of Environmental Conservation; (5) conversion of algal biomass into biocrude fuel at pilot scale with a 33% increase in yield compared to the previous bench scale continuous-flow reactor studies; and (6) refinement of a scalability analysis and optimization model to guide the future development of full-scale prototypes.
  • Eutrophication Management via Iron-Phosphorus Binding

    Abstract: The presence of phosphorus (P) in excessive quantities can lead to undesired conditions, such as cyanobacterial/algal bloom. The over-enriched hypertrophic conditions or the excess amounts of nutrients (nitrogen and P, P being the primary nutrient of concern) are the major cause of harmful cyanobacterial blooms, which can be toxic and can also lead to oxygen depletion and anoxic respiration (hypoxia) in the hypolimnion. The presence of iron compounds has been shown to bind phosphorus and diminish harmful algal blooms. Therefore, an iron-plates-packed reactor has been designed to reduce P in surface water. This cost-effective and easy-to-install system has shown promising results in phosphorus reduction.