Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Channels (Hydraulic engineering)
Clear
  • Fort McHenry Limited Access Channel: Ship Simulation Study

    Abstract: The Port of Baltimore (POB), Maryland is the primary US entry point for roll-on/roll-off cargo and significant export location for coal. POB generates millions of dollars in revenue per day. The collapse of the Francis Scott Key Bridge brought about by the M/V Dali striking of Pier 19 closed the POB to all vessel traffic, halting all port business. The US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory (CHL) conducted an emergency ship simulation study to assist the US Army Corps of Engineers, Baltimore District (CENAB) in evaluating the viability of a proposed limited-access channel around the site of the M/V Dali accident. During this study and with the participation of the Association of Maryland Pilots (AMP), ERDC-CHL was able to confirm the viability of the limited-access channel for five different classes of vessels drafting less than 35 feet.
  • Tampa Harbor, Florida, Navigation Improvement Study

    Abstract: The Port of Tampa Bay services approximately 30.5 million tons of cargo each year (based on 2017–2021 data) and is situated on the Tampa Bay/Orlando I-4 Corridor, which serves the largest concentration of distribution centers in the state. To expand operations to include direct Asia, Mexico, and Central America services, numerous port facility improvements were required. This rapid expansion of port capabilities led to increasing difficulty of port efficiency and navigation. A study was conducted investigating proposed channel improvements addressing these issues. In 2022 and 2023, the US Army Engineer Research and Development Center (ERDC) assisted the US Army Corps of Engineers–Jacksonville District in evaluating proposed deepening and widening alternatives in Tampa Harbor by completing a ship simulation study using ERDC’s Ship/Tow Simulator. During this study, focus areas were passing lanes in Cut B and Gadsden Point Cut, the turning basin at Hooker’s Point/Port Sutton, the turn widener between Cut F and Gadsden Point Cut, and turns into Alafia and Big Bend. The proposed design was evaluated over the course of 2 weeks with four pilots. Proposed modifications were assessed through analysis of data resulting from the ship simulations including track plots, run sheets, and final pilot surveys.
  • Miami Harbor Navigation Improvements Study

    Abstract: In 2019, the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (CHL), Ship/Tow Simulator (STS), was used to perform a navigation study assisting the US Army Corps of Engineers, Jacksonville District. The study evaluates channel improvements to allow larger containerships to call at the Port of Miami. This study also evaluates improvements associated with the proposed cruise terminals. This study was conducted at the CHL real-time STS. Real-time refers to the fact that model time uses a 1:1 ratio to prototype time. In addition, real world environmental forces were simulated and acted upon the modeled ships during the study. These forces included currents, wind, bathymetry, and bank effects. Simulations for the project improvements were conducted at CHL for 3 weeks in August 2019 and 1 week in November 2019. Seven Biscayne Bay pilots participated in the validation and testing exercises. The design vessels include the MSC Daniela (14,000 twenty-foot equivalent unit [TEU]) container ship, the Majestic Maersk (18,000 TEU) container ship, the Allure of the Seas cruise ship, the Disney Dream cruise ship, and the M/S Paradise cruise ship. Results, in the form of track plots and pilot questionnaires, were reviewed to develop conclusions and recommendations.
  • Numerical Modeling of Coastal Processes with Beneficial Use of Dredged Sediment in the Nearshore at Jekyll Island, Georgia

    Abstract: This report provides numerical model results to assist the US Army Corps of Engineers–Savannah District (SAS). These results evaluate beneficial use alternatives for the sediment from an advance maintenance widener of the Brunswick Harbor Entrance Channel between stations −14+000 and −28+000. This study applied a coastal wave, hydrodynamic and sediment transport model (Coastal Modeling System), and a shoreline change model (GenCade), focusing on developing and simulating placement alternatives. Subaerial placement model results indicate better shore and beach preservation than at the nearshore nourishment. Placing sediment closer to the “transition zone” between the revetment and natural beach will increase the volume of sand that remains in that area. Some sediment is predicted to return to the channel, but these volumes are small fractions of the placed material. GenCade results indicate that the transition zone rock debris decreases shoreline erosion. Removing it has less impact on that area than any of the subaerial nourishments, but this prediction does not include profile equilibration that may occur after the first 4 months. Overall, model results indicate that subaerial placement will have strong positive response at the eroding beach, and related increases to channel infilling rates are relatively small.
  • Norfolk Harbor Navigation Improvements Project: Modeling of Dredged Material Placement Schemes and Long-Term Sediment Transport at the Dam Neck Ocean Disposal Site

    Abstract: US Army Corps of Engineers–Norfolk District requested assistance with the development and evaluation of dredged-material-placement schemes that evenly distribute placed material and avoid or minimize unacceptable mounding in accordance with the site management and monitoring plan. A multiple placement fate and transport modeling study was conducted to determine the optimal placement plan for dredged material from Thimble Shoals Channel and Atlantic Ocean Channel at the Dam Neck Ocean Disposal Site (DNODS). Provided the large volume of dredged material to be placed at DNODS over a short duration during the construction period, a modeling study was performed using the Geophysical Scale Multi-Block (GSMB) modeling system to determine the transport and fate of placed dredged material at the DNODS that is resuspended by currents and waves over a 2-year period. Six scenarios were undertaken to determine the best path forward. Scenarios 1 and 4 were excluded due to high exceedance of the depth threshold. Scenarios 2, 3, 5, and 6 yielded an approximate 1%–2% dispersal of placed materials from the DNODS during ambient environmental conditions; Scenario 6 yielded the least. Most dispersion occurred during two simulated hurricanes. The model findings generally support the DNODS Environmental Impact Statement and site-designation documents.
  • Upper Mississippi River Main Channel Sediment Placement: Purpose, Practice, Effects, and Recommendations

    Abstract: Dredged-sediment management in the Upper Mississippi River and Illinois Waterway is constrained by environmental factors and regulations that limit where sediment can be placed. Regulations regarding in-water sediment placement are not consistent among states. In-water placement should be promoted because it keeps sediment in the system and reduces costs for managing sediment dredged from the river. Studies investigating the environmental effects of in-water placement generally conclude that sand-on-sand placement has minimal effect on aquatic resources in the dynamic riverine environment. This report discusses in-water sediment management techniques, including flow- and sediment-regulating structures (i.e., dikes and wing dams) and a bed-load sediment collector by-pass system.
  • Surge Analysis in Mobile Harbor, Alabama: Ship-Simulation Report

    Abstract: A navigation channel improvement study for Mobile Harbor was conducted by the US Army Corps of Engineers, Mobile District (CESAM), and the Alabama State Port Authority. The US Army Engineer Research and Development Center (ERDC) assisted CESAM in assessing channel modifications using ERDC’s Ship/Tow Simulator through a Feasibility Level Screening Simulation study in 2017 and through a more comprehensive ship-simulation study in 2020. During the 2020 study, a safety concern was identified related to vessel interactions between a transiting vessel passing docked vessels at the McDuffie Coal Terminal located along the main federal channel. In the previous ship-simulation studies, the docked vessels were represented as targets, which means the ships are visually represented but no hydrodynamic interaction is captured. To fully assess this interaction, a surge-analysis study was completed in 2022 that used hydrodynamic models to represent docked vessels with representative mooring conditions. This study assessed several proposed navigation channel expansions across from the McDuffie Coal Terminal over the course of six testing days with four pilots. Assessment of the proposed modifications was accomplished through analysis of ship simulations completed by experienced local pilots, track plots, run sheets, and final pilot questionnaires.
  • Investigation of Sources of Sediment Associated with Deposition in the Calcasieu Ship Channel

    Abstract: The Calcasieu Ship Channel (CSC) is a deep-draft federal channel located in southwest Louisiana. It is the channelized lowermost segment of the Calcasieu River, connecting Lake Charles to the Gulf of Mexico. With support from the Regional Sediment Management Program, the US Army Corps of Engineers, New Orleans District, requested that the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, perform an investigation of the potential sources of sediment associated with dredging in the CSC. A previous study had quantified sediment from known sources, indicating that the known sediment sources contribute approximately only 21% of the volume that is regularly dredged from the channel. This technical report details the results of the current study, which employed multiple methods, including numerical analysis, to identify potential additional sources of sediment by first examining the available literature and the modeled energetics and flow pathways, and then estimating the quantities of sediment associated with these identified sources that may be contributing to the shoaling of the CSC. The results of these efforts were used to update the original sediment budget with estimates of the contributions from two additional sources: the erosion of interior wetlands and coastally derived sediments.
  • Sediment Provenance Studies of the Calcasieu Ship Channel, Louisiana

    Abstract: To maintain the navigability of the Calcasieu Ship Channel (CSC), the US Army Corps of Engineers annually dredges millions of cubic yards of sediment from the inland channel. To assess sources of channel shoaling, a previous study examined river and bankline erosion as inputs. Results from that study accounted for approximately 20% of dredged volumes. Through the support of the Regional Sediment Management Program, a follow-up investigation reviewed prior sediment budgets, identified potential missing sediment sources, modeled potential sediment pathways, and utilized geochemical fingerprinting to discern primary shoaling sources to the channel. The missing sediment sources from the original budget include coastally derived sediment from the Gulf of Mexico and terrestrially derived sediment from Lake Calcasieu and surrounding wetlands. Results from geochemical fingerprinting of various potential sediment sources indicate the Calcasieu River and the Gulf of Mexico are primary contributors of sediment to the CSC, and sediments sourced from bankline erosion, Lake Calcasieu bed, and interior wetlands are secondary in nature. These results suggest that engineering solutions to control shoaling in the CSC should be focused on sources originating from the Gulf of Mexico and river headwaters as opposed to Lake Calcasieu, channel banklines, and surrounding wetlands
  • Two Years of Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 2 years of monitoring were performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Technical Report ERDC/CHL TR-20-14 describes the first year of post-project monitoring and the methodologies employed. This report describes conclusions derived from 2 years of monitoring. While the navigation improvements are largely preventing the channel from infilling, shoaling within is occurring at rates higher than expected. The placement site appears stable and accreting landward; however, there continues to be erosion along the shoreline and through the gaps in the breakwaters. SAV monitoring indicates that SAV is not present in the project footprint, even though turbidity is comparable to the reference area. Physical disturbance of the bottom sediment during construction may explain SAV absence.