Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: energy resilience
Clear
  • Enhancing Building Thermal Comfort: A Review of Phase Change Materials in Concrete

    Abstract: The DoD accounts for over 1% of the country's total electricity consumption. However, DoD bases heavily rely on vulnerable commercial power grids, susceptible to disruptions from outdated infrastructure, weather-related incidents, and direct attacks. To enhance energy efficiency and resilience, it is imperative to address energy demand in buildings, especially heating and cooling. This study focuses on phase change materials (PCMs) incorporated into concrete to enhance thermal control and reduce energy consumption. Though PCMs have shown promise in heat transfer and energy storage applications, their integration into concrete faces challenges. Concerns include potential reduction in compressive strength, impacts on workability and setting time, effects on density and porosity, durability, and higher cost than traditional concrete. This report examines current obstacles hindering the use of PCMs in concrete and proposes opportunities for extensive research and application. By selecting appropriate PCMs and additives, comparable strength to control samples can be achieved. Moreover, specific techniques for incorporating PCMs into concrete demonstrate greater effectiveness. Embracing PCMs in concrete can significantly contribute to energy-efficient and resilient DoD installations.
  • Evaluation of Non-Destructive Testing (NDT) Methods for Wood Power Poles

    Abstract: This technical report aims to test the effectiveness of several non-destructive testing (NDT) technologies on wood utility poles to detect deterioration. The project will assess commercially available devices using sound velocity and drilling resistance methods for in-field measurements. The goal is to extend the lifetime of wood poles, prevent unexpected failure, and enhance their in-service life beyond the current 75-year expectation. Despite the benefits of wood poles, it is difficult to obtain reliable deterioration metrics on in-service poles, which can lead to premature decommissioning or pole failure. NDT methods have been developed to replace labor-intensive methods, but none have been largely adopted in common practice. Therefore, creating a database of validated data would expedite adoption. Integrating precise and efficient wood utility pole NDT can increase installation energy resiliency and facility sustainment in a fiscally responsible way, ensuring high standards of delivery of services.