US Army Corps of Engineers
Engineer Research and Development Center Website

Results:
Category: Coastal Management
Clear
  • guiBathy: A Graphical User Interface to Estimate Nearshore Bathymetry from Hovering Unmanned Aerial System Imagery

    Abstract: This US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, technical report details guiBathy, a graphical user interface to estimate nearshore bathymetry from imagery collected via a hovering Unmanned Aerial System (UAS). guiBathy provides an end-to-end solution for non-subject-matter-experts to utilize commercial-off-the-shelf UAS to collect quantitative imagery of the nearshore by packaging robust photogrammetric and signal-processing algorithms into an easy-to-use software interface. This report begins by providing brief background on coastal imaging and the photogrammetry and bathymetric inversion algorithms guiBathy utilizes, as well as UAS data collection requirements. The report then describes guiBathy software specifications, features, and workflow. Example guiBathy applications conclude the report with UAS bathymetry measurements taken during the 2020 Atlantic Hurricane Season, which compare favorably (root mean square error = 0.44 to 0.72 m; bias = -0.35 to -0.11 m) with in situ survey measurements. guiBathy is a standalone executable software for Windows 10 platforms and will be freely available at www.github.com/erdc.
  • Evaluation of Unmanned Aircraft System Coastal Data Collection and Horizontal Accuracy: A Case Study at Garden City Beach, South Carolina

    Abstract: The US Army Corps of Engineers (USACE) aims to evaluate unmanned aircraft system (UAS) technology to support flood risk management applications, examining data collection and processing methods and exploring potential for coastal capabilities. Foundational evaluation of the technology is critical for understanding data application and determining best practices for data collection and processing. This study demonstrated UAS Multispectral (MS) and Red Green Blue (RGB) image efficacy for coastal monitoring using Garden City Beach, South Carolina, as a case study. Relative impacts to horizontal accuracy were evaluated under varying field scenarios (flying altitude, viewing angle, and use of onboard Real-Time Kinematic–Global Positioning System), level of commercial off-the-shelf software processing precision (default optimal versus high or low levels) and processing time, and number of ground control points applied during postprocessing (default number versus additional points). Many data sets met the minimum horizontal accuracy requirements designated by USACE Engineering Manual 2015. Data collection and processing methods highlight procedures resulting in high resolution UAS MS and RGB imagery that meets a variety of USACE project monitoring needs for site plans, beach renourishment and hurricane protection projects, project conditions, planning and feasibility studies, floodplain mapping, water quality analysis, flood control studies, emergency management, and ecosystem restoration.
  • PUBLICATION NOTICE: On the Use of CSHORE for Beach-fx

    Purpose: This Coastal and Hydraulics Engineering Technical Note (CHETN) presents and documents a series of MATLAB and Python scripts that prepare, run, and process CSHORE files for use in Beach-fx. CSHORE (Johnson et al. 2012) is a one-dimensional cross-shore profile evolution model that predicts storm-induced beach profile change. Beach-fx (Gravens et al. 2007) is an engineering-economic model that computes the evolution and economic benefits associated with beach renourishment projects and requires profile erosion estimates. Historically, the crossshore profile response model SBEACH (Larson et al. 1990) has been implemented in the creation of Beach-fx studies although the Beach-fx model was designed to allow alternative profile response models, such as CSHORE, to be used.

News Release Archive