Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Sediment transport--Computer simulation
Clear
  • Testing the Compatibility of the Sediment Budget Analysis System 2020 with Various Data Sources

    Abstract: This Regional Sediment Management technical note (RSM TN) provides the workflow for implementing results of various toolsets into the Sediment Budget Analysis System (SBAS). SBAS is a commonly used toolset developed by the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory (ERDC-CHL) for creating and visualizing sediment budgets. Recent upgrades to SBAS have warranted an investigation into its ability to accurately accept various data sources. Three case studies are presented showcasing the variety of acceptable tools, both ERDC-CHL published and custom-user created.
  • Sediment Budget Analysis System (SBAS) 2020 User’s Guide: Version 1.0

    Abstract: This special report acts as a user’s guide for the Sediment Budget Analysis System (SBAS) toolbox within ArcGIS Pro. The SBAS toolbox is a free toolset that allows the user to create and visualize a sediment budget using ArcGIS Pro. Included in this report are instructions on how to download the toolbox and create a sediment budget.
  • PUBLICATION NOTICE: Computer-Based Calibration and Uncertainty Analysis of GenCade: Description and Proof of Concept

    Purpose: This Coastal and Hydraulics Engineering Technical Note (CHETN) provides a description of a methodology for the computer-based calibration or Parameter Estimation (PE) and corresponding Uncertainty Analysis (UA) for the shoreline change model GenCade developed by the US Army Corps of Engineers. This work demonstrates the suitability and benefits of applying the proposed PE and UA methods to GenCade studies using an idealized case as well as a simple field study as a proof of concept. This document is primarily for engineers and decision-makers interested in the implementation of PE and UA in one-line shoreline change models such as GenCade.
  • PUBLICATION NOTICE: A Comparison of GenCade,  Pelnard-Considere, and LITPACK

    PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to investigate the basic physics and numerical code of GenCade by running a series of simplified test cases and comparing the results to another numerical shoreline evolution model and an analytical solution. The complementary numerical code is the widely used shoreline evolution model LITPACK. The analytical model is the original solution derived by Pelnard-Considere (1956). The underlying assumption in all three approaches is a beach profile of constant shape so that shoreline change is driven by long-shore transport processes and a combination of independent sediment sources or sinks (e.g., sea level change, subsidence). The CHETN presents a descriptive overview of the theory behind the models followed by an inter-comparison using a set of four test cases involving shoreline change in the vicinity of idealized coastal structures and a beach nourishment. GenCade shows good agreement with LITPACK, and both models compare well to the analytical solution for these idealized cases. The GenCade results indicate that the underlying numerical code and basic physical process are consistent with other widely used shoreline modeling systems.
  • PUBLICATION NOTICE: Cross-Shore Transport Feature for GenCade

    PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to introduce a new cross-shore transport capability in GenCade. The cross-shore transport feature is based on a new empirical algorithm that includes wave velocity skewness to calculate the near-bed sediment flux. Validation of the new algorithm was achieved using shoreline position data collected at the US Army Corps of Engineers (USACE) Field Research Facility (FRF) located in Duck, NC. This CHETN presents the theory behind the new cross-shore transport feature and validation using data collected at the FRF. Comparisons with and without the cross-shore feature are presented to demonstrate the improved GenCade performance. The CHETN concludes information that should be considered when using this new feature.