ERDC Library Menu

Redirecting...

Contact

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

Search the ERDC Library

About the Library

The ERDC Library supports the mission-related research needs of ERDC scientists and engineers at three physical locations with a centralized library catalog and web site. It also hosts an online digital repository of ERDC-authored reports.

The ERDC Library collection is available for interlibrary loan. Please contact your local library for all interlibrary loan requests. Other requests should be directed to the reference staff.

Additionally the library provides access to:

  • 300,000+ items in the collection - 28,000+ online journals - 34,000+ online books & reports
  • Online research resources including IEEE, Science Direct, Web of Science, RefWorks
  • Collection development and interlibrary loan services
  • Research consultations, training, and outreach services
  • Support for copyright questions and support for research and administrative initiatives

Social Media

Publication Notices

Results:
Tag: Environmental Management
Clear
  • Demonstration of Subsurface Passive Acoustic Monitoring (SPAM) to Survey for and Estimate Populations of Imperiled Underwater-calling Frogs

    Abstract: The management and recovery of threatened and endangered amphibians on Department of Defense (DoD) lands relies on an understanding of their distribution and abundance. Fortunately, most anuran species can be surveyed acoustically using vocalizations during the breeding season. This work demonstrated the use of subsurface passive acoustic monitoring (SPAM) to survey for rare underwater-calling, at-risk anuran species on DoD installations. We evaluated the performance of SPAM relative to traditional passive acoustic monitoring (PAM) (microphone) and human manual calling survey (MCS) methods. Results showed that SPAM outperformed PAM and MCS in validation experiments where calls were generated underwater; SPAM was less successful than PAM and MCS in the field demonstration. Most leopard frog calls were apparently produced in air despite previous reports of extensive underwater-calling behavior. This project highlights how acoustic information can help address a data gap in the ecology of at-risk species, which can help refine future survey methodology and management efforts. Ultimately, the utility of SPAM for underwater-calling species will depend on the focal species, the landscape where it occurs, and technological considerations available to the surveyor. SPAM is more expensive than traditional methods but, in some situations, may be the only way to effectively detect species.
  • Water Level Management for Enhanced Fish and Wildlife Habitat Production in Upper Mississippi River Navigation Pools: An Engineering with Nature® Review of Practice

    Abstract: There is a long history of fish and wildlife management associated with Upper Mississippi River navigation dams owned and operated by the US Army Corps of Engineers (USACE). Many operational changes have been made to improve aquatic habitat, with recent emphasis on pool-scale drawdowns to enhance wetland benefits without affecting navigation or other uses. This special report describes projects successfully incorporating Engineering With Nature® principles in a review of the physical setting and historical fish and wildlife habitat management efforts using Upper Mississippi River System navigation dams. We reviewed 80 years of adaptation and lessons learned about how to integrate navigation operations and wildlife management. Several experiments have revealed the capacity to produce thousands of hectares of emergent and submersed aquatic plants, restoring much-needed riparian habitat for a variety of aquatic, wetland, and avian species.
  • Engineering With Nature®: Supporting Mission Resilience and Infrastructure Value at Department of Defense Installations

    Abstract: This book illustrates some of the current challenges and hazards experienced by military installations, and the content highlights activities at seven military installations to achieve increased resilience through natural infrastructure.
  • Optimizing the Harmful Algal Bloom Interception, Treatment, and Transformation System (HABITATS)

    Abstract: Harmful algal blooms (HABs) continue to affect lakes and waterways across the nation, often resulting in environmental and economic damage at regional scales. The US Army Engineer Research and Development Center (ERDC) and collaborators have continued research on the Harmful Algal Bloom Interception, Treatment, and Transformation System (HABITATS) project to develop a rapidly deployable and scalable system for mitigating large HABs. The second year of the project focused on optimization research, including (1) development of a new organic flocculant formulation for neutralization and flotation of algal cells; (2) testing and initial optimization of a new, high-throughput biomass dewatering system with low power requirements; (3) development, design, assembly, and initial testing of the first shipboard HABITATS prototype; (4) execution of two field pilot studies of interception and treatment systems in coordination with the Florida Department of Environmental Protection and New York State Department of Environmental Conservation; (5) conversion of algal biomass into biocrude fuel at pilot scale with a 33% increase in yield compared to the previous bench scale continuous-flow reactor studies; and (6) refinement of a scalability analysis and optimization model to guide the future development of full-scale prototypes.
  • Technical Guide for the Development, Evaluation, and Modification of Stream Assessment Methods for the Corps Regulatory Program

    ABSTRACT: The U.S. Army Corps Regulatory Program considers the loss (impacts) and gain (compensatory mitigation) of aquatic resource functions as part of Clean Water Act Section 404 permitting and compensatory mitigation decisions. To better inform this regulatory decision-making, the Regulatory Program needs transparent and objective approaches to assess the function and condition of aquatic resources, including streams. Therefore, the Regulatory Program needs function-based stream assessments (1) to characterize a stream’s condition or function, (2) to improve understanding of the impact of a proposed action on an aquatic resource, and/or (3) to inform the development of stream compensatory mitigation tools rooted in stream condition and/or function. A function-based stream assessment can provide regulatory decision makers with the resources to objectively consider alternatives, minimize impacts, assess un-avoidable impacts, determine mitigation requirements, and monitor the success of mitigation projects. A multiagency National Committee on Stream Assessment (NCSA) convened to create these guidelines to inform the development of new methods and evaluation of both national-level and regional methods currently in use. The resulting guidelines present nine phases, including rationale and recommendations to facilitate work efforts. The NCSA hopes that this technical guide promotes transparency, technical defensibility, and consistent application of stream assessments in the Regulatory Program.
  • Threatened, Endangered, and At-Risk Species for Consideration into Climate Change Models in the Northeast

    Abstract: This special report provides a selection process for choosing priority species using the specific focus of high-elevation, forested habitats in the North Atlantic to demonstrate the process. This process includes criteria for choosing invasive species to incorporate into models, given the predicted spread of invasive plant species because of climate change. Discussed in this report are the US Army Corps of Engineers’ Threatened and Endangered Species Team portal, the US Fish and Wildlife Service’s Information for Planning and Consultation Portal, the nonprofit organization Partners in Flight’s watch list, the US Geological Survey’s Biodiversity Information Serving Our Nation model, and NatureServe’s interagency effort Landfire. The data linked this montane habitat with a species of conservation concern, Cartharus bicknelli and the endangered squirrel Glaucomys sabrinus as target species and with Elaeagnus umbellate, Robinia pseudoacacia, Rhamnus cathartica, and Acer planoides as invasive species. Incorporating these links into the climate change framework developed by Davis et al. (2018) will create predictive models for the impacts of climate change on TER-S, which will affect land management decisions in the region.
  • An Evaluation of Soil Phosphorus Storage Capacity (SPSC) at Proposed Wetland Restoration Locations in the Western Lake Erie Basin

    Abstract: Historical loss of wetlands coupled with excess phosphorus (P) loading at watershed scales have degraded water quality in portions of the western Lake Erie Basin (WLEB). In response, efforts are underway to restore wetlands and decrease P loading to surface waters. Because wetlands have a finite capacity to retain P, researchers have developed techniques to determine whether wetlands function as P sources or sinks. The following technical report evaluates the soil P storage capacity (SPSC) at locations under consideration for wetland restoration in collaboration with the Great Lakes Restoration Initiative (GLRI) and the H2Ohio initiative. Results indicate that the examined soils display a range of P retention capacities, reflecting historic land-use patterns and management regimes. However, the majority of study locations exhibited some capacity to sequester additional P. The analysis supports development of rankings and comparative analyses of areas within a specific land parcel, informing management through design, avoidance, removal, or remediation of potential legacy P sources. Additionally, the approaches described herein support relative comparisons between multiple potential wetland development properties. These results, in conjunction with other data sources, can be used to target, prioritize, justify, and improve decision-making for wetland management activities in the WLEB.
  • Phytomanagement of Soil and Groundwater at the Niagara Falls Storage Site (NFSS) Using Hybridized Trees

    Abstract: The Manhattan Engineer District previously used the 191-acre Niagara Falls Storage Site (NFSS) in Niagara County, New York, to store radioactive residues and wastes from uranium (U) ore processing. At present, management practices will determine whether enhanced evapotranspiration rates produced by hybridized shrub willow cuttings planted in 2016 will affect groundwater hydrology. Two shrub willow varieties were planted in an approximately one-half acre area to examine growth performance along a U impacted sanitary sewer line. Additionally, control plots will compare the effectiveness of shrub willows to unplanted areas. Observations of the planted area after 18 months showed success of shrub willow growth with increasing biomass. Chemical analysis from tree tissue samples of the field study showed no significant uptake of U or thorium (Th) to date. A greenhouse study conducted in parallel to the field study tested the willows under controlled greenhouse conditions and evaluated their ability to grow and accumulate contaminants under controlled conditions. Results from the greenhouse study demonstrated that U accumulation was minimal. Thus, this study demonstrates that the shrub willows are not accumulators of U or Th, an advantageous characteristic that implies stabilized contaminants in the soil and no translocation of U into the aboveground biomass.
  • Monitoring Ecological Restoration with Imagery Tools (MERIT): Python-based Decision Support Tools Integrated into ArcGIS for Satellite and UAS Image Processing, Analysis, and Classification

    Abstract: Monitoring the impacts of ecosystem restoration strategies requires both short-term and long-term land surface monitoring. The combined use of unmanned aerial systems (UAS) and satellite imagery enable effective landscape and natural resource management. However, processing, analyzing, and creating derivative imagery products can be time consuming, manually intensive, and cost prohibitive. In order to provide fast, accurate, and standardized UAS and satellite imagery processing, we have developed a suite of easy-to-use tools integrated into the graphical user interface (GUI) of ArcMap and ArcGIS Pro as well as open-source solutions using NodeOpenDroneMap. We built the Monitoring Ecological Restoration with Imagery Tools (MERIT) using Python and leveraging third-party libraries and open-source software capabilities typically unavailable within ArcGIS. MERIT will save US Army Corps of Engineers (USACE) districts significant time in data acquisition, processing, and analysis by allowing a user to move from image acquisition and preprocessing to a final output for decision-making with one application. Although we designed MERIT for use in wetlands research, many tools have regional or global relevancy for a variety of environmental monitoring initiatives.
  • Demonstration of Autonomous Aerial Acoustic Recording Systems to Inventory Department of Defense Bird Populations

    Abstract: This demonstration project addressed the Department of Defense need for innovative technology for monitoring avian populations in inaccessible areas. This report presents results from field validation tests for an autonomous aerial acoustic recording system, a helium-filled weather balloon that transported an instrument payload over inaccessible areas (e.g., ordnance impact areas) to record avian vocalizations.