ERDC Library Menu

Redirecting...

Contact

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

Search the ERDC Library

About the Library

The ERDC Library supports the mission-related research needs of ERDC scientists and engineers at three physical locations with a centralized library catalog and web site. It also hosts an online digital repository of ERDC-authored reports.

The ERDC Library collection is available for interlibrary loan. Please contact your local library for all interlibrary loan requests. Other requests should be directed to the reference staff.

Additionally the library provides access to:

  • 300,000+ items in the collection - 28,000+ online journals - 34,000+ online books & reports
  • Online research resources including IEEE, Science Direct, Web of Science, RefWorks
  • Collection development and interlibrary loan services
  • Research consultations, training, and outreach services
  • Support for copyright questions and support for research and administrative initiatives

Social Media

Publication Notices

Results:
Tag: geology
Clear
  • Automated Characterization of Ridge-Swale Patterns Along the Mississippi River

    Abstract: The orientation of constructed levee embankments relative to alluvial swales is a useful measure for identifying regions susceptible to backward erosion piping (BEP). This research was conducted to create an automated, efficient process to classify patterns and orientations of swales within the Lower Mississippi Valley (LMV) to support levee risk assessments. Two machine learning algorithms are used to train the classification models: a convolutional neural network and a U-net. The resulting workflow can identify linear topographic features but is unable to reliably differentiate swales from other features, such as the levee structure and riverbanks. Further tuning of training data or manual identification of regions of interest could yield significantly better results. The workflow also provides an orientation to each linear feature to support subsequent analyses of position relative to levee alignments. While the individual models fall short of immediate applicability, the procedure provides a feasible, automated scheme to assist in swale classification and characterization within mature alluvial valley systems similar to LMV.
  • Framework Geology of Cape Shoalwater and Northwest Willapa Bay, Washington: Assessing Potential Geologic Impacts on Recent Shoreline Change

    Abstract: The shoreline along Cape Shoalwater and northwest Willapa Bay has experienced the highest rates of erosion along the entire Pacific Coast of the United States, due in part to rapid northward migration of the navigation channel. Recently, channel migration and shoreline erosion in this region have slowed, but the cause of this relative stabilization, and thus the longevity of these new patterns, is unknown. Given the complex neotectonics and geologic framework of the southern coast of Washington, it is possible that underlying, erosion-resistant geologic units have become exposed along the channel and/or in the nearshore, and are acting to reduce or halt channel migration and/or shoreline erosion. Conversely, the apparent reduction may be due to subtle, short-term changes in regional hydrodynamics and/or sediment transport, and thus future rates of channel migration and/or shoreline erosion might increase back to historical rates. The purpose of this special report is to detail the geologic and neotectonic framework of the northern Willapa Bay region, and determine how the underlying framework geology might be impacting channel stability and adjacent shoreline erosion rates. Suggested research questions to quantify potential geologic control are also presented, including the potential benefits of the research to the district.

News Release Archive