ERDC Library Menu

Redirecting...

Contact

erdclibrary@ask-a-librarian.info

601.501.7632 - text
601.634.2355 - voice

 

Search the ERDC Library

About the Library

The ERDC Library supports the mission-related research needs of ERDC scientists and engineers at three physical locations with a centralized library catalog and web site. It also hosts an online digital repository of ERDC-authored reports.

The ERDC Library collection is available for interlibrary loan. Please contact your local library for all interlibrary loan requests. Other requests should be directed to the reference staff.

Additionally the library provides access to:

  • 300,000+ items in the collection - 28,000+ online journals - 34,000+ online books & reports
  • Online research resources including IEEE, Science Direct, Web of Science, RefWorks
  • Collection development and interlibrary loan services
  • Research consultations, training, and outreach services
  • Support for copyright questions and support for research and administrative initiatives

Social Media

Publication Notices

Results:
Category: Research
Clear
  • PUBLICATION NOTICE: Post-Project Monitoring of a Navigation Solution in a Dynamic Coastal Environment, Smith Island, Maryland: Year One of Post-Project Monitoring

    Abstract: In 2018, jetties and a sill were constructed by the US Army Corps of Engineers (USACE) adjacent to the Sheep Pen Gut Federal Channel at Rhodes Point, Smith Island, Maryland. These navigation improvements were constructed under Section 107 of the Continuing Authorities Program. Material dredged for construction of the navigation structures and realignment of the channel were used to restore degraded marsh. Following construction and dredging, 1 year of post-project monitoring was performed to evaluate the performance of navigation improvements with respect to the prevention of shoaling within the Sheep Pen Gut channel, shoreline changes, and impacts to submerged aquatic vegetation (SAV). Given the short period of record after the completion of the navigation improvements, it was difficult to draw conclusions regarding stability of the channel, structures, and shoreline. Therefore, this report documents methodology and baseline conditions for monitoring, except for SAV, which was found to be potentially impacted by construction. A second year of monitoring was funded by the USACE Regional Sediment Management Program for fiscal year 2020. Findings can be used to inform plan formulation and design for USACE navigation projects by illuminating considerations for placement of structures to prevent shoaling and by informing SAV management decisions.
  • PUBLICATION NOTICE: The Urban Ground-to-Ground Radio-Frequency Channel: Measurement and Modeling in the Ultrahigh Frequency Band

    ABSTRACT:  Ground-to-ground radio communication and sensing within the urban environment is challenging because line of sight between transmitter and receiver is rarely available. Therefore, radio links are often critically reliant on reflection and scattering from built structures. Little is known about the scattering strength of different buildings or whether such differences are important to the urban ground-to-ground channel. We tested the hypotheses that (1) diffuse scattering from built structures significantly impacts the urban channel and (2) scattering strength of urban structures varies with surface roughness and materials.  We tested these hypotheses by measuring urban channels in Concord, New Hampshire, and Boston, Massachusetts, and via channel-modeling efforts with three-dimensional representations of the urban environment. Direct comparison between measured and modeled channels suggest that both of these hypotheses are true. Further, it appears that ray-tracing approaches underestimate the complexity of urban channels because these approaches lack the physical processes to correctly assess the power incident on and scattered from built structures. We developed a radio-geospatial model that better accounts for incident power on both directly visible and occluded buildings and show that our model predictions com-pare more favorably with measured channels than those channels predicted via typical ray-tracing approaches.
  • PUBLICATION NOTICE: Army Installation Makerspaces in the Morale, Welfare, and Recreation (MWR) Operational Environment: A Business Case Analysis

    Abstract:  This work demonstrated the implementation of makerspaces, collaborative workspaces that provide hands-on learning to help prepare the future workforce with critical 21st century applied-technology skills. Researchers from the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) enhanced and evaluated the pre-existing makerspace at Fort Bliss, Texas to demonstrate the value of a makerspace within the military Morale, Welfare, and Recreation (MWR) environment. The 8-month pilot demonstration, conducted from May to December 2018, focused on investigating program characteristics such as usage trends, optimal locations, equipment, and personnel access. Results from the demonstration indicated that enhanced makerspaces with high quality equipment had a positive Soldier impact. The business case analysis determined that the Fort Bliss Makerspace fits the criteria of, met the 15% cost-to-revenue ratio threshold for, and can operate successfully as, a Category Type A (Mission Sustaining) program asset.
  • PUBLICATION NOTICE: Development of Expedient Ultra-High Molecular Weight Aircraft Arresting System Panel Installation Procedures

    Abstract: The US Army Engineer Research and Development Center conducted an evaluation of different procedures to install ultra-high molecular weight polyethylene panels beneath pendant-based aircraft arresting systems (AAS). Currently employed techniques were modified or new techniques were developed to increase productivity and installation accuracy, aid in system constructability, and reduce logistical concerns when compared to AAS requirements and pavement repair guidance. Procedures for both asphalt concrete and portland cement concrete surfaced runway pavement were evaluated. The field evaluation was conducted from July to August 2013 at the Silver Flag Training Site, Tyndall Air Force Base, FL. The evaluation consisted of timing various procedures using a six- to eight-man installation crew. Equipment and supplies currently in Air Force inventories were preferred, but outside items were not prohibited if performance gains could be achieved and the new items were deployable using typical military cargo aircraft. Required work tasks were organized and grouped together to efficiently complete the panel installation work within multiple short-term runway closure windows without any long-term closures greater than 12 hours to allow for aircraft operations during the installation process. This report summarizes the timed field trials and the pertinent conclusions based on the results. Recommendations for implementation including additional equipment, supplies, and personnel needs are provided.
  • PUBLICATION NOTICE: Autonomous QUerying And PATHogen Threat Agent Sensor System (AQUA PATH): Monitoring Source Waters with Geospatially Wirelessly Networked Distributed Sensing Systems

    Abstract: Contaminants serve as health risks to recreational water, potable water, and marine life that result in undocumented effects on population exposure. In many areas of the world, the concern lies in contaminated drinking water, which would immediately effect social and economic order. As research advances for innovative solutions, the deployment of automated systems for source water monitoring could reduce the risk of exposure. Water quality monitoring typically involves sample collection and analyses that are performed in a laboratory setting. These results are normally presented after an 18−48 hr period. This report details the prototyped Autonomous QUerying And PATHogen threat agent sensor (AQUA PATH) geoenabled system that is able to detect the presence/absence of pathogenic bacteria indicators in source waters and report these values in the field, in less than 30 minutes. The AQUA PATH system establishes rapid field data collection and reports assessment of source waters bacterial loads at near shore inner coastal locations, which makes a leap forward compared to current presence/absence tests standards established by the EPA.

News Release Archive