ERDC Library Menu



601.501.7632 - text
601.634.2355 - voice


Search the ERDC Library

About the Library

The ERDC Library supports the mission-related research needs of ERDC scientists and engineers at three physical locations with a centralized library catalog and web site. It also hosts an online digital repository of ERDC-authored reports.

The ERDC Library collection is available for interlibrary loan. Please contact your local library for all interlibrary loan requests. Other requests should be directed to the reference staff.

Additionally the library provides access to:

  • 300,000+ items in the collection - 28,000+ online journals - 34,000+ online books & reports
  • Online research resources including IEEE, Science Direct, Web of Science, RefWorks
  • Collection development and interlibrary loan services
  • Research consultations, training, and outreach services
  • Support for copyright questions and support for research and administrative initiatives

Social Media

Publication Notices

  • Publications of the U.S. Army Engineer Research and Development Center; Appendix F: FY21 (October 2020-September 2021)

    Abstract: Publications issued October 2020 through September 2021 by the U.S. Army Engineer Research and Development Center (ERDC) are listed. The publications are grouped according to the technical laboratories or technical program for which they were prepared. Procedures for obtaining ERDC reports are included in the Preface.
  • Hydrodynamics in the Morganza Floodway and Atchafalaya Basin, Report 3: Phase 3; A Report for the US Army Corps of Engineers, MRG&P

    Abstract: The Morganza Floodway and the Atchafalaya Basin, located in Louisiana west of the Mississippi River, were evaluated using a two-dimensional Adaptive Hydraulics model. Prior to this study, Phase 1 and 2 model studies were performed that indicated that the existing floodway may not be able to pass the Project Design Flood discharge of 600,000 cubic feet per second due to levee overtopping. In this study, all elevations of exterior and interior levees were updated with current crest elevations. In addition, the Phase 3 effort evaluated the sensitivity of the floodway’s flow capacity to variations in tree/vegetation density conditions. These adjustments in roughness will improve the understanding of the role of land cover characteristics in the simulated water surfaces. This study also provides a number of inundation maps corresponding to certain flows through the Morganza Control Structure.
  • Implementation of an Albedo-Based Drag Partition into the WRF-Chem v4.1 AFWA Dust Emission Module

    ABSTRACT: Employing numerical prediction models can be a powerful tool for fore-casting air quality and visibility hazards related to dust events. However, these numerical models are sensitive to surface conditions. Roughness features (e.g., rocks, vegetation, furrows, etc.) that shelter or attenuate wind flow over the soil surface affect the magnitude and spatial distribution of dust emission. To aide in simulating the emission phase of dust transport, we used a previously published albedo-based drag partition parameterization to better represent the component of wind friction speed affecting the immediate soil surface. This report serves as a guide for integrating this parameterization into the Weather Research and Forecasting with Chemistry (WRF-Chem) model. We include the procedure for preprocessing the required input data, as well as the code modifications for the Air Force Weather Agency (AFWA) dust emission module. In addition, we provide an example demonstration of output data from a simulation of a dust event that occurred in the Southwestern United States, which incorporates use of the drag partition.
  • Vertical and Horizontal Datums Used in the Lower Mississippi Valley for US Army Corps of Engineers Projects

    Abstract: Six geodetic datums have been used by the US Army Corps of Engineers (USACE), Mississippi River Commission (MRC), for river surveys in the Lower Mississippi Valley (LMV). These legacy elevation datums are the Cairo datum, the Memphis datum, the Mean Gulf Level (MGL), the Mean Sea Level (MSL), the National Geodetic Vertical Datum (NGVD) 1929, and the North American Vertical Datum 1988 (NAVD88). The official geodetic datum currently prescribed by the USACE is NAVD88 (USACE 2010). In addition to these different geodetic datums, hydraulic datums are in use by the USACE for rivers, lakes, and reservoir systems. Hydrographic surveys from the Mississippi River are typically based on a low water pool or discharge reference, such as a low water reference plane (LWRP), an average low water plane (ALWP), or a low water (LW) plane. The following technical note is intended to provide background information about legacy datums used in the LMV to permit comparison of historic maps, charts, and surveys pertaining to the Mississippi River in the LMV. The purpose of this report is to provide background information and history of different published horizontal and vertical datums used for presentation of hydrographic survey data from the Mississippi River. The goal is to facilitate understanding of differences with comparison to other historic surveys for change-detection studies along the river. Conversion values are identified herein for the earlier surveys where appropriate, and methods are presented here to evaluate the differences between earlier and later charts and maps. This report is solely intended to address the LMV area and historic surveys made there. This note is not applicable to areas outside of the LMV. Throughout this technical note, historic hydrographic surveys and data from the Memphis, TN, to Rosedale, MS, reach will be used as examples of features of interest for discussion purposes. Selected historic hydrographic survey sheets at Helena, AR, are included as Plates 1 to 3 (Appendix C) of this document and will be used as examples for discussion purposes.
  • A Study on the Delta-Bullington Irregular Terrain Radiofrequency Propagation Model: Assessing Model Suitability for Use in Decision Support Tools

    ABSTRACT: Modeling the propagation of radiofrequency signals over irregular terrain is both challenging and critically important in numerous Army applications. One application of particular importance is the performance and radio connectivity of sensors deployed in scenarios where the terrain and the environment significantly impact signal propagation. This report investigates both the performance of and the algorithms and assumptions underlying the Delta-Bullington irregular terrain radiofrequency propagation model discussed in International Telecommunications Union Recommendation P.526-15. The aim is to determine its suitability for use within sensor-planning decision support tools. After reviewing free-space, spherical earth diffraction, and terrain obstacle diffraction losses, the report discusses several important tests of the model, including reciprocity and geographic continuity of propagation loss over large areas of rugged terrain. Overall, the Delta-Bullington model performed well, providing reasonably rapid and geographically continuous propagation loss estimates with computational demands appropriate for operational use.
  • The Mechanics of Snow Friction as Revealed by Micro-Scale Interface Observations

    Abstract: The mechanics of snow friction are central to competitive skiing, safe winter driving and efficient polar sleds. For nearly 80 years, prevailing theory has postulated that self-lubrication accounts for low kinetic friction on snow: dry-contact sliding warms snow grains to the melting point, and further sliding produces meltwater layers that lubricate the interface. We sought to verify that self-lubrication occurs at the grain scale and to quantify the evolution of real contact area to aid modeling. We used high-resolution (15 μm) infrared thermography to observe the warming of stationary snow under a rotating polyethylene slider. Surprisingly, we did not observe melting at contacting snow grains despite low friction values. In some cases, slider shear failed inter-granular bonds and produced widespread snow movement with no persistent contacts to melt (μ < 0.03). When the snow grains did not move and persistent contacts evolved, the slider abraded rather than melted the grains at low resistance (μ < 0.05). Optical microscopy revealed that the abraded particles deposited in air pockets between grains and thereby carried heat away from the interface, a process not included in current models. Overall, our results challenge whether self-lubrication is indeed the dominant mechanism underlying low snow kinetic friction.
  • Infrasound Propagation in the Arctic

    Abstract: This report summarizes results of the basic research project “Infrasound Propagation in the Arctic.” The scientific objective of this project was to provide a baseline understanding of the characteristic horizontal propagation distances, frequency dependencies, and conditions leading to enhanced propagation of infrasound in the Arctic region. The approach emphasized theory and numerical modeling as an initial step toward improving understanding of the basic phenomenology, and thus lay the foundation for productive experiments in the future. The modeling approach combined mesoscale numerical weather forecasts from the Polar Weather Research and Forecasting model with advanced acoustic propagation calculations. The project produced significant advances with regard to parabolic equation modeling of sound propagation in a windy atmosphere. For the polar low, interesting interactions with the stratosphere were found, which could possibly be used to provide early warning of strong stratospheric warming events (i.e., the polar vortex). The katabatic wind resulted in a very strong low-level duct, which, when combined with a highly reflective icy ground surface, leads to efficient long-distance propagation. This information is useful in devising strategies for positioning sensors to monitor environmental phenomena and human activities.
  • Assessing the Mechanisms Thought to Govern Ice and Snow Friction and Their Interplay with Substrate Brittle Behavior

    Abstract: Sliding friction on ice and snow is characteristically low at temperatures common on Earth’s surface. This slipperiness underlies efficient sleds, winter sports, and the need for specialized tires. Friction can also play micro-mechanical role affecting ice compressive and crushing strengths. Researchers have proposed several mechanisms thought to govern ice and snow friction, but directly validating the underlying mechanics has been difficult. This may be changing, as instruments capable of micro-scale measurements and imaging are now being brought to bear on friction studies. Nevertheless, given the broad regimes of practical interest (interaction length, temperature, speed, pressure, slider properties, etc.), it may be unrealistic to expect that a single mechanism accounts for why ice and snow are slippery. Because bulk ice, and the ice grains that constitute snow, are solids near their melting point at terrestrial temperatures, most research has focused on whether a lubricating water film forms at the interface with a slider. However, ice is extremely brittle, and dry-contact abrasion and wear at the front of sliders could prevent or delay a transition to lubricated contact. Also, water is a poor lubricant, and lubricating films thick enough to separate surface asperities may not form for many systems of interest. This article aims to assess our knowledge of the mechanics underlying ice and snow friction.
  • Fort Huachuca Ranges: A History and Analysis

    Abstract: Fort Huachuca Environmental and Natural Resources Division (ENRD) sent funds to ERDC-CERL to develop a historic context that assists Fort Huachuca personnel in identifying the likely history and provenance of numerous historic range features located across Fort Huachuca's training lands. The historic context will be used by cultural resources personnel to evaluate and manage the resources appropriately. Various historic training range features (e.g., structures, fragments, and items left over from previous activities) are located across the ranges of Fort Huachuca, representing its long and storied history. To help identify and catalog these features, ERDC-CERL conducted a field survey of the training ranges in 2016 in or-der to photograph the historic range features. Forty-one historic range features were identified. Researchers conducted archival research, literature reviews, and image analysis of historic and current maps and photographs to identify the 41 historic range features and place them within a chronological context of Fort Huachuca's training ranges. The report concludes with guidance on how to identify and associate sites and features within the overall historic training range chronology and evaluate them appropriately for significance and National Register of Historic Places (NRHP) eligibility.
  • Evidence that Abrasion Can Govern Snow Kinetic Friction

    Abstract: The long-accepted theory to explain why snow is slippery postulates self-lubrication: frictional heat from sliding melts and thereby lubricates the contacting snow grains. We recently published micro-scale interface observations that contradicted this explanation: contacting snow grains abraded and did not melt under a polyethylene slider, despite low friction values. Here we provide additional observational and theoretical evidence that abrasion can govern snow kinetic friction. We obtained coordinated infrared, visible-light and scanning-electron micrographs that confirm that the evolving shapes observed during our tribometer tests are contacting snow grains polished by abrasion, and that the wear particles can sinter together and fill the adjacent pore spaces. Furthermore, dry-contact abrasive wear reasonably predicts the evolution of snow-slider contact area and sliding-heat-source theory confirms that contact temperatures would not reach 0°C during our tribometer tests. Importantly, published measurements of interface temperatures also indicate that melting did not occur during field tests on sleds and skis. Although prevailing theory anticipates a transition from dry to lubricated contact along a slider, we suggest that dry-contact abrasion and heat flow can prevent this transition from occurring for snow-friction scenarios of practical interest.