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BUILDING STRONG®

Concept for Adaptive Noise Prediction 
(EQ/I RAPIDs Project)

1. We wish to predict the noise levels 
associated with some activity (e.g., 
artillery testing at Aberdeen Proving 
Grounds, MD).

2. We start by collecting information on 
the noisy activity, terrain, weather 
forecast, etc., and run our sound 
propagation model to forecast noise 
annoyance in adjacent communities.

3. If the noise forecast is favorable, the 
activity is cleared to proceed. 

4. Monitors in the community can provide 
a real-time check on the accuracy of 
our forecast.

5. Can we utilize limited monitor data to 
improve (or adapt or nudge our 
forecast) to make it more accurate, and 
then advise the testing activity whether 
it can safely continue, or should be 
curtailed?

monitor

explosion 
(sound source)

monitormonitor

monitor

monitor
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But Sounds Levels Random and Difficult to Predict…
Shown below are comparisons between recorded sound levels and predictions 
from the CASES-99 experiment, which was conducted at night in the Great Plains 
(Kansas). This experiment provided the best possible scenario for trying to predict 
sound propagation. (Ref: Wilson et al, J. Atmos. Sci. 60, 2473-2486, 2003)

 Predictions were based on data from a 55-m tower, with wind and temperature sensors every 5 m.
 A parabolic equation method was used to predict the sound propagation.
 Even with excellent atmospheric data (better than we would normally hope to have), predictive skill 

for signal variations is very limited. 

150 Hz, prediction

tower 5 (1170 m)

tower 3 (760 m)

tower 2 (570 m from source)

150 Hz, data
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 What causes the mismatches between 
predictions and observations at a 
noise monitor location?
► Imperfections in our predictions (due to 

limited terrain data, finite resolution of 
atmospheric inputs, limitations of the 
acoustic propagation model, etc.).

► Inherent randomness of sound 
propagation (scattering by atmospheric 
turbulence, variable ground properties, 
objects such as vegetation and buildings 
that can’t be resolved, etc.).

 At best, we can predict the statistical 
distribution of the sound level at a 
monitor (more generally, the signal 
power at a sensor). The parameters of 
the distribution are known only 
imperfectly – they depend on the type 
of signal, frequency, propagation 
geometry, intervening terrain, weather 
conditions, etc.
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Analogous situations may 
occur in military contexts, 
e.g., when we predict signal 
detectability or 
communications in a 
complex environment, and 
then obtain real-time 
feedback on our predictions 
as an operation proceeds.

Predict Assess

Adapt



BUILDING STRONG®

 Many statistical models, physics-based and empirical, have been 
formulated for the random signal variations caused by wave scattering. 

 We will extend such models to include parametric uncertainties
(uncertainties in the wave scattering parameters).

 We also show how modeling parametric uncertainties naturally relates 
to Bayesian inference of the parameters. This relationship can be 
exploited to:
► Identify statistical models for parametric uncertainties leading to convenient 

analytical solutions.
► Develop sequential updating algorithms, which refine an initial prediction of the 

wave scattering parameters as new signal observations become available.
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Outline
• Basic single-variate distributions for scattered signals 

(exponential, log-normal, Rician, gamma, generalized gamma)
• Parametric uncertainties

• Compound pdf formulation
• Turbulent intermittency (exponential/log-normal)
• K-distribution and its generalization

• Bayesian methods for incorporating signal observations
• Bayes’ theorem and relationship to the compound pdf
• Log-normal/normal (weak scattering)
• Exponential/inverse gamma (strong scattering)
• Gamma/inverse gamma (weak or strong scattering)

• Multi-variate distributions
• Log-normal/normal (weak scattering)
• Wishart DOF 2 (strong scattering)

• Implications for signal detection

• Automated target recognition (ATR)
with random signals

• Conclusions
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Simple Conceptual Model

 The total received signal consists of contributions from an unscattered (direct) 
path and from multiple randomly scattered (incoherent) paths.

 Weak scattering means that the direct path dominates; strong scattering
(Rayleigh or deep fading) means that the incoherent scattered paths dominate.

 Parametric uncertainty means that we don’t exactly know the statistics of the 
coherent and/or incoherently scattered waves.

scatterers

signal source receiver

unscattered (direct) path

scattered (incoherent) paths
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Distributions for Scattered Signal Power (Notation)

In general, we write the probability density function (pdf) for the scattered signal power as:

𝑝𝑝 𝑠𝑠 𝛉𝛉

signal power

parameters of the distribution

Example: For strong scattering, the signal power has an exponential distribution:

𝑝𝑝 𝑠𝑠 𝑚𝑚 =
1
𝑚𝑚

exp −
𝑠𝑠
𝑚𝑚 𝑝𝑝 𝑠𝑠 𝜆𝜆 = 𝜆𝜆 exp −𝜆𝜆𝑠𝑠or

where (first version) 𝛉𝛉 → 𝑚𝑚 and (second version) 𝛉𝛉 → 𝜆𝜆. Here 𝜆𝜆 = 1/𝑚𝑚, and 𝑚𝑚 can be 
shown to equal the mean power.

(Note: for strong scattering, the signal amplitude has a Rayleigh distribution. Throughout 
this presentation, we will focus on distributions for power.)

probability density function (pdf)
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Other pdfs for Scattered Signal Power

Log-normal (applies to weak scattering, based on the Rytov approximation):

Rice (weak scattering based on the Born approximation, exact for strong scattering):

Gamma (weak scattering based on empirical evidence, 
exact for strong scattering):

Generalized gamma (Ewart and Percival 1986) 
(reduces to gamma when 𝑏𝑏 = 1):

Following are some notable pdfs used for scattered signal power from the literature. 
(Many more can be found.)

𝑝𝑝 𝑠𝑠 𝑘𝑘, 𝜆𝜆 =
𝜆𝜆𝑘𝑘𝑠𝑠𝑘𝑘−1

Γ 𝑘𝑘 𝑒𝑒−𝜆𝜆𝑠𝑠

𝑝𝑝 𝑠𝑠 𝜈𝜈, 𝜍𝜍 =
1

2𝜍𝜍2 exp −
𝑠𝑠 + 𝜈𝜈2

2𝜍𝜍2 𝐼𝐼0
𝑠𝑠𝜈𝜈
𝜍𝜍2

𝑝𝑝 𝑠𝑠 𝜇𝜇,𝜙𝜙 =
1

𝑠𝑠𝜙𝜙 2𝜋𝜋
exp −

ln 𝑠𝑠 − 𝜇𝜇 2

2𝜙𝜙2

𝑝𝑝 𝑠𝑠 𝑘𝑘, 𝜆𝜆, 𝑏𝑏 =
𝑏𝑏𝜆𝜆𝑏𝑏𝑘𝑘𝑠𝑠𝑏𝑏𝑘𝑘−1

Γ 𝑘𝑘 𝑒𝑒− 𝜆𝜆𝑠𝑠 𝑏𝑏
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Comparison of Log-normal, Rice, and Gamma pdfs
(with matching means and variances)

Gamma (solid lines) and log-normal (dashed lines) 
pdfs for various values of the variance normalized 
by the squared mean. For weak scattering (which 
is the intended application of the log-normal 
distribution), the pdfs are nearly identical.

Gamma (solid lines) and Rice (dashed lines) pdfs 
for various values of the variance normalized by 
the squared mean. For both strong and weak 
scattering, the pdfs are nearly identical. At 
intermediate cases, there are subtle differences.

Main point: Log-normal is useful only for weak scattering. Rice and gamma are 
useful for both weak and strong scattering.
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Generalized Gamma Distribution
k = 1 (strong scattering)

k = 8 (weak scattering)

The parameter b is seen to 
control the “tails” of the 
distribution. As b decreases, 
the pdfs change from a 
normal-like appearance to 
having tails exceeding the 
gamma distribution for the 
corresponding value of k.

Based on empirical fits to 
ocean acoustic data, Ewing 
and Percival (1986) find that b
is usually less than 1 
(elevated tails are present).
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Parametric Uncertainties and the Compound pdf

Example: Turbulent intermittency with strong scattering 
(Gurvich and Kukharets 1986; Wilson et al. 1996)

We use a compound pdf to account for uncertainties:

pdf describing scattering
(depends on parameters θ)

pdf for scattering parameters θ
(depends on hyperparameters χ)

𝑝𝑝 𝑠𝑠 𝛘𝛘 = �𝑝𝑝 𝑠𝑠 𝛉𝛉 𝑝𝑝 𝛉𝛉 𝛘𝛘 𝑑𝑑𝛉𝛉

For strong scattering, the signal power has an exponential pdf:

By Kolmogorov’s refined hypothesis (1962), the structure-function parameters of 
turbulence (and hence the scattering cross section in the inertial subrange) have a log-
normal distribution. Thus

𝑝𝑝 𝑠𝑠 𝛉𝛉 = 𝑝𝑝 𝑠𝑠 𝑚𝑚 =
1
𝑚𝑚

exp −
𝑠𝑠
𝑚𝑚

𝑝𝑝 𝛉𝛉 𝛘𝛘 = 𝑝𝑝 𝑚𝑚 𝜇𝜇,𝜙𝜙 =
1

𝑚𝑚𝜙𝜙 2𝜋𝜋
exp −

ln 𝑚𝑚 − 𝜇𝜇 2

2𝜙𝜙2

The integral for 𝑝𝑝 𝑠𝑠 𝛘𝛘 = 𝑝𝑝 𝑠𝑠|𝜇𝜇,𝜙𝜙 unfortunately does not have an analytical solution 
in this case and thus must be determined numerically. 
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K-Distribution

The K-distribution results from compounding an exponential pdf for s (valid for strong 
scattering) with a gamma pdf (hyperparameters 𝛼𝛼, 𝛽𝛽) for the mean power m:

Andrews and Phillips (2005): “…it has been observed that the lognormal PDF … can 
underestimate the … tails as compared with measured data. Underestimating the tails of a 
PDF has important consequences on radar and communication systems where detection 
and fade probabilities are calculated over the tails of the PDF”. 

Andrews and Phillips proposed using compound pdfs to provide models with more realistic 
tails (although they referred to it as a “modulation process”.) This led them to the K-
distribution.

The generalized K-distribution results from compounding a gamma pdf for s (with shape 
parameter k; valid for weak or strong scattering) with a gamma pdf (parameters 𝛼𝛼, 𝛽𝛽) for 
the mean power m:

For 𝑘𝑘 = 1, the generalized K-distribution reduces to the ordinary K-distribution.

𝑝𝑝 𝑠𝑠|𝛼𝛼,𝛽𝛽 =
2𝛽𝛽
Γ 𝛼𝛼

𝛽𝛽𝑠𝑠 𝛼𝛼−1 /2𝐾𝐾𝛼𝛼−1 2 𝛽𝛽𝑠𝑠

𝑝𝑝 𝑠𝑠|𝛼𝛼,𝛽𝛽,𝑘𝑘 =
2𝛽𝛽

Γ 𝑘𝑘 Γ 𝛼𝛼
𝛽𝛽𝑠𝑠 𝑘𝑘+𝛼𝛼−2 /2𝐾𝐾𝛼𝛼−𝑘𝑘 2 𝛽𝛽𝑠𝑠
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Comparison of Gamma and Generalized K-Distributions
k = 1 (strong scattering)

The gamma distributions 
(scattering pdf without 
any uncertainty) are the 
black dashed lines. For 
k = 1, the gamma 
distribution matches the 
exponential.

As α increases, the K-
distribution converges to 
the gamma pdf 
(scattering when no 
parametric uncertainties 
are present).

k = 8 (weak scattering)
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Bayesian Probability: Introduction
• Bayesian probability is based on assigning a prior probability to some hypothesis 

(belief), and then updating that probability as relevant new data are collected.

• Conventional “frequentist” probability does not involve assignment of prior 
probabilities; we simply collect data and assess statistics.

• One might think frequentism is superior because it is unbiased by the choice of prior. 
However, the Bayesian viewpoint has largely triumphed, because it provides a 
rational way to deal with limited datasets. 

Recommended:
• S. B. McGrayne, The Theory That Would Not Die: How 

Bayes’ Rule Cracked the Enigma Code, Hunted Down 
Russian Submarines, and Emerged Triumphant from Two 
Centuries of Controversy (Yale, 2011).

• N. Silver, The Signal and the Noise: Why So Many 
Predictions Fail – But Some Don’t (Penguin, 2012).
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Bayes’ theorem provides a 
prescription for updating a 
prior probability as new data 
become available. The 
updated probability is called 
the posterior. The posterior at 
one iteration can be used as 
the prior at the next.
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Connection between Bayes’ Theorem 
and the Compound pdf

Bayes’ theorem:

physics-based model for 
wave scattering (without 

uncertainties)

model for 
uncertainties in 

scattering 
parameters

compound pdf for signal 
distribution incorporating 

uncertainties

likelihood function prior distribution

model evidence

posterior distribution

Bayesian inferenceCompound pdf

posterior priorlikelihood

marginal (compound pdf from earlier)

𝑝𝑝 𝜃𝜃 𝑠𝑠, χ =
)𝑝𝑝(𝑠𝑠|𝜃𝜃, χ)𝑝𝑝(𝜃𝜃|χ

𝑝𝑝(𝑠𝑠|χ)
=

)𝑝𝑝(𝑠𝑠|𝜃𝜃, χ)𝑝𝑝(𝜃𝜃|χ
∫𝑝𝑝 (𝑠𝑠|𝜃𝜃′, χ)𝑝𝑝(𝜃𝜃′|χ)𝑑𝑑𝜃𝜃′
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Utilization of Bayesian Conjugate Priors
We are especially interested in cases where the prior and posterior have the same 
functional form; the prior is then said to be the conjugate prior of the likelihood function. 
This leads to a convenient iterative process where we can sequentially update the 
hyperparameters as observations of the signal become available.

Strong scattering example: As discussed previously, the signal power has an exponential 
pdf for strong scattering. In the Bayesian context, this is the likelihood function. The 
conjugate prior for an exponential likelihood function is known to be the gamma distribution 
with parameters 𝜃𝜃 → 𝛼𝛼,𝛽𝛽 . Hence we set

Integrating, we find for the compound pdf/model evidence:

This is called a Lomax or Pareto Type II distribution. For the posterior, we then find

This leads to the following simple formula for updating the distribution of the uncertain 
parameter 𝜆𝜆 each time a new signal observation s becomes available:

𝑝𝑝 𝜆𝜆 𝛼𝛼,𝛽𝛽 = Gamma 𝜆𝜆 𝛼𝛼,𝛽𝛽 =
𝛽𝛽𝛼𝛼𝜆𝜆𝛼𝛼−1

Γ 𝛼𝛼 𝑒𝑒−𝜆𝜆𝜆𝜆

𝑝𝑝 𝑠𝑠 𝛼𝛼,𝛽𝛽 =
𝛼𝛼𝛽𝛽𝛼𝛼

𝑠𝑠 + 𝛽𝛽 𝛼𝛼+1

𝛼𝛼 → 𝛼𝛼 + 1, 𝛽𝛽 → 𝛽𝛽 + 𝑠𝑠𝑝𝑝 𝜆𝜆 𝑠𝑠,𝛼𝛼,𝛽𝛽 = Gamma 𝜆𝜆 𝛼𝛼 + 1,𝛽𝛽 + 𝑠𝑠

𝑝𝑝 𝑠𝑠 𝜆𝜆 = 𝜆𝜆 exp −𝜆𝜆𝑠𝑠

𝑝𝑝 𝜆𝜆 𝑠𝑠,𝛼𝛼,𝛽𝛽 =
𝛽𝛽 + 𝑠𝑠 𝛼𝛼+1𝜆𝜆𝛼𝛼

Γ 𝛼𝛼 + 1 𝑒𝑒−𝜆𝜆 𝜆𝜆+𝑠𝑠
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Comparison of K- and Lomax Distributions 
(k = 1, strong scattering)

K-distributions

Lomax distributions

Here, we have set β such that
the signal mean equals 1.

As α increases, the pdfs 
converge to the exponential 
pdf (that is, to the strong 
scattering case when no 
parametric uncertainties are 
present).

Note that decreasing α
(increasing uncertainty) leads 
to much higher tails in the 
distribution.
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Bayesian Adaptation for Strong Scattering: Simulation
Problem statement: We wish to know the mean received signal power. The signal varies 
randomly due to strong scattering (exponential pdf). We start with a prior (proposed) 
distribution for the mean, specifically a gamma pdf, which describes our initially limited 
knowledge of the mean. We then begin to collect samples of the random signal. After each 
sample is collected, we can refine the distribution for the mean using Bayes’ theorem.

prior distribution
posterior after 1 sample

mean of λ for prioractual mean of λ

posterior after 256 samples

...
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Log-Normal Signal Model with Parametric Uncertainty 
(Rytov Approximation for Weak Scattering)

A log-normal pdf can be used to describe a signal with weak scattering. Here we 
formulate the parametric model for the logarithm of the signal, η = ln s:

We assume that µ (log-mean of the scattered signal strength) is normally 
distributed and that the variance of µ is known. Performing the integration, we find

Hence the distribution for the log-signal is still normal, although the variance increases.

The Bayesian update for the posterior distribution is:
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Multivariate Log-Normal Distribution 
(for Weak Scattering on Multiple Paths)

Extension of the log-normal signal model for the single variate case is straight forward, 
assuming that the logarithms of the signals follow a multivariate normal distribution:

We assume that µ (log-mean of the scattered signal strengths) is normally distributed. 
The variance of µ is assumed to be known. Performing the integration, we then find

The Bayesian update for the posterior distribution is:



BUILDING STRONG®

Wishart Distribution (n = 2) 
(for Strong Scattering on Multiple Paths)

The Wishart distribution is a generalization of the chi-squared distribution to matrices. 
For two degrees of freedom (n = 2), the marginals of the diagonal elements of the matrix 
have exponential distributions. Thus, the Wishart distribution may an appropriate model 
for strong scattering along multiple paths.

𝑝𝑝 𝐒𝐒 𝑛𝑛,𝐕𝐕 =
𝐒𝐒 𝑛𝑛−𝑝𝑝−1 /2

2𝑛𝑛𝑝𝑝/2Γ𝑝𝑝
𝑛𝑛
2 𝐕𝐕 𝑛𝑛/2

exp −tr 𝐕𝐕−1𝐒𝐒 /2

Wishart pdf for 𝑛𝑛 > 𝑝𝑝 − 1 degrees of freedom:

Here, 𝐒𝐒 is a 𝑝𝑝 × 𝑝𝑝 symmetric positive definite matrix (containing the signal power at each 
sensor and their cross correlations), and 𝐕𝐕 is the scale matrix (𝑝𝑝 × 𝑝𝑝 positive definite).

Similarly, the matrix gamma distribution generalizes the gamma distribution to positive 
definite symmetric matrices. It might be useful for both weak and strong scattering.
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Wishart Distribution (n = 2)

𝑉𝑉 = 1 0
0 2

𝑉𝑉 = 1 − 2
− 2 2

𝑉𝑉 = 1 2
2 2

(perfectly out of phase)

(randomly phased)

(perfectly in phase)

Shown is a case where the mean on 
one path is twice the mean on the other.

Solid lines are theoretical results and 
circles are numerical simulations. The 
marginals 𝑝𝑝11 and 𝑝𝑝22 follow an 
exponential distribution. The marginal 
𝑝𝑝12 has a variance-gamma distribution.
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Signal Distributions and Physical Association
Likelihood 
function (random 
signal model)

Prior (for mean 
signal power)

Physical interpretation Posterior (for
mean signal 
power)

Model evidence 
(signal model with 
uncertainty)

Exponential Gamma (mean) Strong scattering, single receiver (non-analytic) K-distribution

Exponential Gamma (rate) Strong scattering, single receiver Gamma (rate) Lomax

Exponential Log-normal Strong scattering w/turbulent 
intermittency, single receiver 

(non-analytic) (non-analytic)

Rice (?) Weak (Born) or strong scattering, 
single receiver

(?) (?)

Gamma Gamma (mean) Weak (empirical) or strong, single 
receiver

(non-analytic) Generalized K-
distribution

Gamma Gamma (rate) Weak (empirical) or strong, single 
receiver

Gamma (rate) Compound gamma
distribution

Log-normal Normal Weak (Rytov) scattering, single
receiver

Normal T distribution

Log-normal, 
multivariate

Multivariate normal Weak (Rytov) scattering, multiple 
receivers

Multivariate
normal

T distribution, 
multivariate

Wishart, 2 degree-
of-freedom

(matrix inverse 
gamma?)

Strong scattering, multiple receivers (matrix inverse 
gamma?)

(?)

Matrix gamma (matrix inverse 
gamma?)

Weak (empirical) or strong, multiple 
receivers

(matrix inverse 
gamma?)

(?)

Bayesian conjugate priors are available for the cases shown in red. 
Final two rows above are somewhat speculative.
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Conceptual Model (with Noise)

The received signal consists of the signal of interest, which propagates along and direct path 
and multiple randomly scattered paths, and noise from multiple, random sources.

scattered path

noise source

direct path

signal source receiver
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Basic Formulation of Detection Problem

Let p(s, n | θ) be the joint probability density function (pdf) for the signal and noise, 
where θ is the set of parameters for the pdf. Then the probability of false alarm is

where p0(x | θn) is the pdf for the noise alone. The probability of detection is

where p1(x | θ) is the pdf for the signal plus noise.

The random scattering and random noise mechanisms lead to a probabilistic 
distribution for the signal and noise.

𝑃𝑃fa 𝜃𝜃𝑛𝑛 = �
𝛾𝛾

∞
𝑝𝑝0 𝑥𝑥|𝜃𝜃𝑛𝑛 𝑑𝑑𝑥𝑥 𝑝𝑝0(𝑥𝑥|𝜃𝜃𝑛𝑛) = 𝑝𝑝(𝑛𝑛|𝜃𝜃𝑛𝑛) = �𝑝𝑝 (𝑠𝑠,𝑛𝑛|𝜃𝜃)𝑑𝑑𝑠𝑠.

𝑃𝑃d 𝜃𝜃 = �
𝛾𝛾

∞
𝑝𝑝1 𝑥𝑥|𝜃𝜃 𝑑𝑑𝑥𝑥 𝑝𝑝1(𝑥𝑥|𝜃𝜃) = �𝑝𝑝 (𝑠𝑠, 𝑥𝑥 − 𝑠𝑠|𝜃𝜃)𝑑𝑑𝑠𝑠.
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ROC Curves with Parametric Uncertainty

Receiver operating characteristic (ROC) curves corresponding to a gamma-distributed 
signal with the specified shape factor and gamma-distributed noise with kn = 4. The 
signal-to-noise ratio (SNR) is 2, and the hyperparameter β is varied as shown in the 
legend. (The hyperparameter α is set to kβ +1, so that the mean signal power is 1.)

ks = 1 
(strong 
scattering/
fading)

ks = 4 
(moderate
scattering/
fading)



BUILDING STRONG®

ATR “Brick Wall”
One of the primary unsolved challenges for performing robust 
automated target recognition (ATR) is how to compensate the 
signatures for environmental propagation effects. As a result, 
ATR algorithms tend to function well only very near the source 
(where propagation effects are minimized) or in the specific 
terrain and atmospheric conditions for which they were trained. 

► This is particularly true for acoustic and RF signals, which undergo strong 
frequency-dependent scattering and refraction, particularly in complex 
environments such as urban, forest, and mountainous. But optical and 
other types of signals are also impacted.

► In principle, the problem might be attacked by building much larger 
observational (or simulation) databases than we have now to encompass 
many additional propagation scenarios. However, we cannot afford to 
collect data in every terrain condition, ground condition, wind condition, 
etc., in which a system might operate.
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Conceptual Model for ATR with Random Propagation

 The source signal propagates randomly along multiple transmission paths. 
 Each sensor receives a version of the feature set (vector) which is distorted 

during transmission, by a combination of deterministic and random effects.
 We model hyperparameters, namely statistical parameters for the received signal 

feature set, at each receiver location.

signal source (target Ck, 
emits features s1, ..., sn )

receiver

receiver

receiver

receiver j
(receives data x1,j , ..., xn,j )
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Bayesian Classifier w/Propagation Effects

1. Use a physics-based model (e.g., an acoustic propagation model supplied with local terrain 
and weather forecast data) to predict parameters of the pdfs (hyperparameters, 𝜽𝜽) for the 
feature set for each target (𝐶𝐶𝑘𝑘), namely 𝑝𝑝 𝜽𝜽 𝐶𝐶𝑘𝑘 .

2. Calculate the probability 𝑝𝑝 𝐱𝐱 𝐶𝐶𝑘𝑘 for an observation of the feature set 𝐱𝐱 for a given target, using 
the model from Step 1.

3. Use Bayes’ theorem to calculate the posterior probability for each target, 𝑝𝑝 𝐶𝐶𝑘𝑘 𝐱𝐱 .

prior probability for target Ck

Approach:

𝑝𝑝 𝐶𝐶𝑘𝑘 𝐱𝐱 =
𝑝𝑝 𝐶𝐶𝑘𝑘 𝑝𝑝 𝐱𝐱 𝐶𝐶𝑘𝑘

𝑝𝑝 𝐱𝐱 =
𝑝𝑝 𝐶𝐶𝑘𝑘
𝑝𝑝 𝐱𝐱 �𝑝𝑝 𝐱𝐱 𝜽𝜽 𝑝𝑝 𝜽𝜽 𝐶𝐶𝑘𝑘 𝑑𝑑𝜽𝜽

probability for observed feature set 
(normalizing factor)

probability for observed feature set, given 
modeled propagation from target Ck

probability for modeled signal parameters 
(hyperparameters), for target Ck

posterior probability for target Ck

𝐶𝐶𝑘𝑘 = target class k

𝜽𝜽 = vector of pdf parameters for signal features (all features, all receivers)

𝐱𝐱 = vector of signal features (all features, all receivers)

likelihood of observed feature set, for target Ck

p(a | b) = probability density function for a conditioned on the value of b 

Notation
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Signal Parameter Updates

Classifier update:
Provides the probability of a 
particular target, given the observed 
feature values.

One of the strengths of the Bayesian formulation is that it provides a way to 
update our knowledge of the signal parameters as more observations become 
available. This helps us overcome the random, unpredictable behavior 
(scintillations) of acoustic, RF, optical, and other types of signals.

Hyperparameter update:
Updates the propagation prediction for 
a particular target, given the observed 
feature values.

𝑝𝑝 𝐶𝐶𝑘𝑘 𝐱𝐱 =
𝑝𝑝 𝐱𝐱 𝐶𝐶𝑘𝑘 𝑝𝑝 𝐶𝐶𝑘𝑘

𝑝𝑝 𝐱𝐱
𝑝𝑝 𝜽𝜽 𝐱𝐱,𝐶𝐶𝑘𝑘 =

𝑝𝑝 𝐱𝐱 𝜽𝜽 𝑝𝑝 𝜽𝜽 𝐶𝐶𝑘𝑘
𝑝𝑝 𝐱𝐱 𝐶𝐶𝑘𝑘

Sequential updating: The posterior at the current time step becomes the prior 
at the next time step; that is, 𝑝𝑝 𝐶𝐶𝑘𝑘 𝐱𝐱 becomes the new 𝑝𝑝 𝐶𝐶𝑘𝑘 , and 𝑝𝑝 𝜽𝜽 𝐱𝐱,𝐶𝐶𝑘𝑘
becomes the new 𝑝𝑝 𝜽𝜽 𝐶𝐶𝑘𝑘 . Hence our knowledge of the target probability 
and the true signal parameters systematically improves as more 
observations are collected.
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Conclusions
 Connections were examined between physics-based 

statistical modeling of signals, uncertainties in the 
wave scattering parameters, and Bayesian inference. 

 Uncertainties can be addressed with a compound pdf, 
which incorporates separate pdfs for the wave 
scattering process, and for the uncertain wave 
scattering parameters. 

 Uncertainty tends to raise the tails of the signal pdfs, 
which has important implications for detection and 
communication system performance.

 In the Bayesian perspective, the scattering models 
correspond to likelihood functions, which are 
conveniently paired with their conjugate priors to 
efficiently update the uncertain signal parameters. 
The prior distributions, as predicted using an initial 
forecast based on available weather and terrain data, 
can then be refined as additional signal observations 
are collected. 
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