An Unconditionally Stable Cut Finite Element Immersed Boundary Method

Kyle Dunn Advisors: Marcus Sarkis, Roger Lui

Worcester Polytechnic Institute

CRREL Ron Liston Seminar April 4, 2018

Outline

- Motivation and finite element background
- Introduction
 - The immersed boundary method
 - Cut finite element method (CutFEM)
- 3 Cut finite element immersed boundary method
 - Derivation of the algorithm
 - Energy stability

Motivation

- Goal: Couple fluid velocity and pressure with forces generated by immersed elastic structure.
- Fluid initially at rest.
- Infinitesimally thin membrane.
 - Initially deformed.
 - Bending and stretching allowed.
- No external forces.

Figure: Immersed interface oscillating in fluid.

Finite Element Methods

- Finite element method: Numerical method that takes a larger problem and break down into smaller parts (elements).
- Necessary spaces of functions:
 - $L^2(\Omega)$: All functions f such that $\|f\|_{L^2(\Omega)}^2 = \int_{\Omega} f^2$ is finite.
 - $H^1(\Omega)$: All functions f such that $\|f\|_{H^1(\Omega)}^2 := \|f\|_{L^2(\Omega)}^2 + \|\nabla f\|_{L^2(\Omega)}^2$ is finite.
 - $H_0^1(\Omega)$: All functions $f \in H^1(\Omega)$ such that f = 0 on $\partial \Omega$.
- Recall: Green's identity (integration by parts)

$$-\int_{\Omega}(\Delta u)v=\int_{\Omega}\nabla u\cdot\nabla v-\int_{\partial\Omega}(\nabla u\cdot\hat{\mathbf{n}})v.$$

Weak Formulation

- Weak formulation: Multiply PDE by "sufficiently smooth" test function v and integrate by parts.
- Example: For $\Omega = [0,1] \times [0,1]$ and $f \in L^2(\Omega)$,

$$\begin{cases}
-\Delta u &= f & \text{on } \Omega \\
u &= 0 & \text{on } \partial \Omega
\end{cases}$$

becomes

$$\int_{\Omega} \nabla u \cdot \nabla v - \int_{\partial \Omega} \nabla u \cdot \hat{n} v = \int_{\Omega} f v, \qquad \forall v \in H_0^1(\Omega).$$

• Find $u \in H^1_0(\Omega)$ such that

$$\int_{\Omega}
abla u \cdot
abla v = \int_{\Omega} \mathit{fv}, \qquad orall v \in \mathit{H}^1_0(\Omega).$$

Finite Element Approximation

 Write approximate solution as sum of M scaled "hat" functions φ_i:

$$u_h = \sum_{i=1}^M c_i \phi_i.$$

- For $j = 1, \ldots, M$, choose $v = \phi_j$.
 - Yields M equations in M variables.
- Numerically solve

$$\sum_{i=1}^{M} c_i \int_{\Omega_h} \nabla \phi_i \cdot \nabla \phi_j = \sum_{i=1}^{M} \int_{\Omega_h} f \phi_j,$$

for
$$j = 1, ..., M$$
.

Figure: Example quadrilateral mesh and Q1 basis function.

Outline

- 1 Motivation and finite element background
- Introduction
 - The immersed boundary method
 - Cut finite element method (CutFEM)
- 3 Cut finite element immersed boundary method
 - Derivation of the algorithm
 - Energy stability

Original Problem Setting

• Solve incompressible Stokes equations on $\Omega = (0,1)^2$:

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} - \mu \nabla \cdot \varepsilon(\mathbf{u}) + \nabla p &= \mathbf{F} &\quad \text{in } \Omega, \\ \nabla \cdot \mathbf{u} &= 0 &\quad \text{in } \Omega, \\ \mathbf{u} &= \mathbf{0} &\quad \text{on } \partial \Omega, \end{split}$$

where
$$\varepsilon(\mathbf{u}) = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^T)$$
.

- $\Gamma(t)$: Elastic structure immersed in fluid domain Ω .
- F: Forcing function defined later.

Figure: Example domain with notation used throughout talk.

Description of Γ

- Cartesian coordinates of points on $\Gamma(t)$ denoted by $\mathbf{X}(s,t)$ such that
 - s in reference interval [0, L].
 - X(0,t) = X(L,t).
- X(s, t) denotes position of a material point at time t.
- Parameter s considered a Lagrangian coordinate.
 - Generally not arc length.
 - Can create "stretching" of Γ with choice of parameterization.

Figure: Mapping from reference interval to points on $\Gamma(t)$.

Description of Γ

- Cartesian coordinates of points on $\Gamma(t)$ denoted by $\mathbf{X}(s,t)$ such that
 - s in reference interval [0, L].
 - X(0,t) = X(L,t).
- X(s, t) denotes position of a material point at time t.
- Parameter s considered a Lagrangian coordinate.
 - Generally not arc length.
 - Can create "stretching" of Γ with choice of parameterization.

The Immersed Boundary Method

- Original immersed boundary method introduced by Charles Peskin (1972).
- Developed for numerical analysis of cardiac blood flow.
- General force defined by

$$\mathbf{F}(\mathbf{x},t) = \int_0^L \mathbf{f}(s,t) \delta(\mathbf{x} - \mathbf{X}(s,t)) ds.$$

 Simple model: Stressed initial configuration, zero length at rest

$$\mathbf{f}(s,t) = \kappa \frac{\partial^2 \mathbf{X}}{\partial s^2}(s,t).$$

Figure: Immersed boundary in finite difference grid.

The Immersed Boundary Method

- Original immersed boundary method introduced by Charles Peskin (1972).
- Developed for numerical analysis of cardiac blood flow.
- General force defined by

$$\mathbf{F}(\mathbf{x},t) = \int_0^L \mathbf{f}(s,t) \delta_{arepsilon}(\mathbf{x} - \mathbf{X}(s,t)) \, \mathrm{d}s.$$

 Simple model: Stressed initial configuration, zero length at rest

$$\mathbf{f}(s,t) = \kappa \frac{\partial^2 \mathbf{X}}{\partial s^2}(s,t).$$

Figure: Dirac delta mollified to be seen by grid points.

Finite Element Immersed Boundary Method

- Finite element approach introduced by Boffi & Gastaldi.
- Incorporates force accurately by integrating over Dirac delta.
- First-order accuracy obtained near interface.
 - Error incurred from global approximation of discontinuous quantities and derivatives.

Figure: Dramatization of fitting global linear FEM approximation to discontinuous pressure.

One Potential Approach

Figure: Triangular mesh fitted to interior subdomain.

- Capture jumps by meshing each subdomain.
 - Compute solution on interior and exterior separately.
- Meshing algorithms can be expensive.
- Subdomains change in time:
 - Allow mesh to deform, or
 - Re-mesh at each time step.

The Cut Finite Element Method (CutFEM)

- CutFEM partitions domains into Ω_1 (exterior) and Ω_2 (interior).
- Separate solution for Ω_1 and Ω_2 captures jumps.
 - Can prescribe jump of **u**, *p*, and normal derivatives.
- Optimal accuracy obtained near interface.
- Integrate over intersection of each element with subdomain.
- Weakly impose boundary and jump conditions.

Figure: Example meshes $\Omega_{i,h}^e$ for CutFEM with interface.

Spatial Discretization

(a) DOFs: Blue o for velocity, red × for pressure

(b) Discontinuous pressure

- Uniform square mesh on Ω .
 - h: side length of each square.
- Velocity space $V_{i,h}$: Piecewise biquadratic (continuous Q2) on $\Omega_{i,h}^e$.
- Pressure space $M_{i,h}$: Piecewise linear (discontinuous P1) on $\Omega_{i,h}^e$.
- For ϕ_i defined on Ω_i , denote jump across Γ by

$$\llbracket \phi \rrbracket = \phi_1 - \phi_2$$

and average by

$$\{\phi\} = \frac{1}{2}(\phi_1 + \phi_2).$$

Nitsche's Formulation for Laplace's Equation

• Strong form:

$$-\Delta u_i = 0$$
 in Ω_i ,
 $\llbracket \nabla u \cdot \hat{\mathbf{n}} \rrbracket = g$ on Γ ,
 $\llbracket u \rrbracket = 0$ on Γ ,
 $u_1 = 0$ on $\partial \Omega$.

- Multiply by test function and integrate by parts on Ω_1 and Ω_2 separately.
- After algebra, u_1 and u_2 coupled on Γ with jumps \Longrightarrow and averages.

Nitsche's Formulation for Laplace's Equation

• Strong form:

$$-\Delta u_i = 0$$
 in Ω_i ,
 $\llbracket \nabla u \cdot \hat{\mathbf{n}} \rrbracket = g$ on Γ ,
 $\llbracket u \rrbracket = 0$ on Γ ,
 $u_1 = 0$ on $\partial \Omega$.

- Multiply by test function and integrate by parts on Ω_1 and Ω_2 separately.
- After algebra, u_1 and u_2 coupled on Γ with jumps \Longrightarrow and averages.

- Add penalty terms with $\gamma > 0$ to enforce Dirichlet BCs (red).
- Note: Can add terms for symmetry.

• Weak form:

$$\sum_{i=1}^{2} (\nabla u_{i}, \nabla v_{i})_{\Omega_{i}} - (\llbracket \nabla u \cdot \hat{\mathbf{n}} \rrbracket, \{v\})_{\Gamma} \\
- (\{\nabla u \cdot \hat{\mathbf{n}}\}, \llbracket v \rrbracket)_{\Gamma} - (\nabla u_{1} \cdot \hat{\mathbf{n}}_{1}, v_{1})_{\partial \Omega} \\
+ \frac{\gamma}{h} (\llbracket u \rrbracket, \llbracket v \rrbracket)_{\Gamma} + \frac{\gamma}{h} (u_{1}, v_{1})_{\partial \Omega} = 0.$$

CutFEM: Ghost Penalty

• Add stabilizing "ghost penalty" terms to finite element problem:

$$\mathbf{j}_{i,h}(\mathbf{u}_i,\mathbf{v}_i) = \sum_{\ell=0}^1 \sum_{F \in \mathcal{F}_{i,h}^{\Gamma}} \int_F h^{2\ell+1} \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)}(\varepsilon(\mathbf{u}_i) \hat{\mathbf{n}}_F) \right] \cdot \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)}(\varepsilon(\mathbf{v}_i) \hat{\mathbf{n}}_F) \right],$$

$$J_{i,h}(p_i,q_i) = \sum_{\ell=0}^1 \sum_{F \in \mathcal{F}_{i,h}^\Gamma} \int_F h^{2\ell+1} \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)} p_i
ight] \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)} q_i
ight].$$

CutFEM: Ghost Penalty

• Add stabilizing "ghost penalty" terms to finite element problem:

$$\mathbf{j}_{i,h}(\mathbf{u}_i,\mathbf{v}_i) = \sum_{\ell=0}^1 \sum_{F \in \mathcal{F}_{i,h}^{\Gamma}} \int_F h^{2\ell+1} \left[\partial_{\mathbf{\hat{n}}_F}^{(\ell)}(\varepsilon(\mathbf{u}_i)\mathbf{\hat{n}}_F) \right] \cdot \left[\partial_{\mathbf{\hat{n}}_F}^{(\ell)}(\varepsilon(\mathbf{v}_i)\mathbf{\hat{n}}_F) \right],$$

$$J_{i,h}(p_i,q_i) = \sum_{\ell=0}^1 \sum_{F \in \mathcal{F}_{i,h}^\Gamma} \int_F h^{2\ell+1} \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)} p_i \right] \left[\partial_{\hat{\mathbf{n}}_F}^{(\ell)} q_i \right].$$

Steady-State Convergence

	Velocity					Pressure			
1/h	L^2	Rate	H^1	Rate	L^2	Rate	H^1	Rate	
8	1.6862e-2		2.1210e-1		1.0151e-1		1.7770e-0		
16	3.0799e-4	54.8	1.1230e-2	18.9	1.2345e-2	8.2	7.2290e-1	2.5	
32	1.6206e-5	19.0	1.2870e-3	8.7	2.0347e-3	6.1	3.0689e-1	2.4	
64	1.0693e-6	15.2	2.0910e-4	6.2	4.7168e-4	4.3	1.4578e-1	2.1	
128	7.6314e-8	14.0	3.2012e-5	6.5	2.0651e-4	2.3	7.0759e-2	2.1	

Table: Error tables for the velocity and pressure..

- Above table computed solving steady-state Stokes equations with immersed interface.
 - Prescribed boundary conditions match actual solution.
- Observe optimal spatial convergence rate.
 - Velocity: 8 in L^2 norm, 4 in H^1 norm.
 - Velocity: 4 in L^2 norm, 2 in H^1 norm.

Outline

- Motivation and finite element background
- 2 Introduction
 - The immersed boundary method
 - Cut finite element method (CutFEM)
- 3 Cut finite element immersed boundary method
 - Derivation of the algorithm
 - Energy stability

• Solve incompressible Stokes equations on Ω_1 and Ω_2 :

$$\begin{split} \frac{\partial \mathbf{u}_i}{\partial t} - \mu \nabla \cdot \varepsilon(\mathbf{u}_i) + \nabla p_i &= \mathbf{0} & \text{in } \Omega_i(t), \\ \nabla \cdot \mathbf{u}_i &= 0 & \text{in } \Omega_i(t), \end{split}$$

Figure: Problem separated into two domains.

• Solve incompressible Stokes equations on Ω_1 and Ω_2 :

$$\begin{split} &\frac{\partial \mathbf{u}_i}{\partial t} - \mu \nabla \cdot \varepsilon(\mathbf{u}_i) + \nabla p_i = \mathbf{0} & \text{in } \Omega_i(t), \\ &\nabla \cdot \mathbf{u}_i = 0 & \text{in } \Omega_i(t), \\ & [\![(\mu \varepsilon(\mathbf{u}) - p) \hat{\mathbf{n}}]\!] = \frac{\kappa}{|\frac{\partial \mathbf{X}}{\partial s}|} \frac{\partial^2 \mathbf{X}}{\partial s^2} & \text{on } \Gamma(t), \\ & [\![\mathbf{u}]\!] = \mathbf{0} & \text{on } \Gamma(t), \end{split}$$

Figure: Problem separated into two domains.

 $\mathbf{u}_1 = \mathbf{0}$

• Solve incompressible Stokes equations on Ω_1 and Ω_2 :

$$\begin{split} &\frac{\partial \mathbf{u}_{i}}{\partial t} - \mu \nabla \cdot \varepsilon(\mathbf{u}_{i}) + \nabla p_{i} = \mathbf{0} & \text{in } \Omega_{i}(t), \\ &\nabla \cdot \mathbf{u}_{i} = 0 & \text{in } \Omega_{i}(t), \\ & [\![(\mu \varepsilon(\mathbf{u}) - p) \hat{\mathbf{n}}]\!] = \frac{\kappa}{|\frac{\partial \mathbf{X}}{\partial s}|} \frac{\partial^{2} \mathbf{X}}{\partial s^{2}} & \text{on } \Gamma(t), \\ & [\![\mathbf{u}]\!] = \mathbf{0} & \text{on } \Gamma(t), \end{split}$$

Figure: Problem separated into two domains.

on $\partial\Omega$.

• Solve incompressible Stokes equations on Ω_1 and Ω_2 :

$$\begin{split} &\frac{\partial \mathbf{u}_i}{\partial t} - \mu \nabla \cdot \varepsilon(\mathbf{u}_i) + \nabla p_i = \mathbf{0} & \text{in } \Omega_i(t), \\ &\nabla \cdot \mathbf{u}_i = 0 & \text{in } \Omega_i(t), \\ & [\![(\mu \varepsilon(\mathbf{u}) - p) \mathbf{\hat{n}}]\!] = \frac{\kappa}{|\frac{\partial \mathbf{X}}{\partial s}|} \frac{\partial^2 \mathbf{X}}{\partial s^2} & \text{on } \Gamma(t), \\ & [\![\mathbf{u}]\!] = \mathbf{0} & \text{on } \Gamma(t), \\ & \mathbf{u}_1 = \mathbf{0} & \text{on } \partial \Omega. \end{split}$$

• Interface no-slip condition:

$$\frac{\partial \mathbf{X}}{\partial t}(s,t) = \left\{ \mathbf{u}(\mathbf{X}(s,t),t) \right\}.$$

Figure: Problem separated into two domains.

Discretization of Domain

Figure: Each vertex of polygon tracked and mapped to [0, L].

- Γ_ñ: Polygonal approximation to interface.
 - Sample $\mathbf{X}(s)$ at m+1 points.
 - Evenly-spaced points in [0, L] denoted by $s_j = j\tilde{h}$ for $\tilde{h} = L/m$ and $j = 0, 1, \ldots, m$.
- Location of $X(s_j)$ updated using fluid velocity at each time step.
- Creates polygonal approximations to subdomains $\Omega_{i,\tilde{h}}$.

Temporal Discretization

• For $\Delta t > 0$, discretize time derivative by

$$\frac{\partial \mathbf{u}_{i}^{n+1}}{\partial t} \approx \frac{\mathbf{u}_{i}^{n+1} - \mathbf{u}_{i}^{n}}{\Delta t}.$$

Discrete no-slip condition:

$$\mathbf{X}_{j}^{n+1} = \mathbf{X}_{j}^{n} + \Delta t \left\{ \mathbf{u}^{n+1}(\mathbf{X}_{j}^{n}) \right\}.$$

- Approximation spaces $\mathbf{V}_{i,h}^n$ and $M_{i,h}^n$ now time-dependent.
- Compute \mathbf{u}_{i}^{n+1} and p_{i}^{n+1} on $\Omega_{i,\tilde{h}}^{n}$.

Figure: Subdomains redefined each time step.

Numerical Simulation: Velocity

Cut Finite Element IBM Algorithm

Define:

 $\mathbf{Y} = \mathbf{X}^n$ in the Explicit algorithm $\mathbf{Y} = \mathbf{X}^{n+1}$ in the Semi-implicit algorithm

Steps:

Compute the force from jump condition

$$\left(\llbracket (\mu \varepsilon (\mathbf{u}^{n+1}) - p^{n+1}) \hat{\mathbf{n}} \rrbracket, \{ \mathbf{v} \} \right)_{\Gamma^n} = \kappa \int_0^L \frac{\partial^2 \mathbf{Y}}{\partial s^2} \cdot \{ \mathbf{v} \} \, \mathrm{d}s$$

for
$$\mathbf{v}_{i} \in \mathbf{V}_{i,h}^{n}$$
, $i = 1, 2$.

- **②** Solve for \mathbf{u}_i^{n+1} and p_i^{n+1} for i=1,2 in finite element problem.
- **3** Update interface location \mathbf{X}_{j}^{n+1} for $j=1,\ldots,m$, using

$$\mathbf{X}_j^{n+1} = \mathbf{X}_j^n + \Delta t \{ \mathbf{u}^{n+1}(\mathbf{X}_j^n) \}$$
 for $j = 0, \dots, m$.

Energy Stability

Define the energy to be the sum of kinetic and elastic potential energy:

$$E^n := \left\| \mathbf{u}^n \right\|_{L^2(\Omega)}^2 + \kappa \left\| \frac{\partial \mathbf{X}^n}{\partial s} \right\|_{L^2([0,L])}^2.$$

Theorem (D., Lui, Sarkis, 2018)

Let $\mathbf{u}_{i,h}^{n+1}$, $p_{i,h}^{n+1}$, and $\mathbf{X}_{\tilde{h}}^{n+1}$ be solutions to the finite element problem at time t^{n+1} with $\mathbf{Y} = \mathbf{X}^{n+1}$. Then the following inequality holds:

$$\begin{split} E^{n+1} \leq & E^{n} - \left(\left\| \mathbf{u}_{h}^{n+1} - \mathbf{u}_{h}^{n} \right\|_{L^{2}(\Omega)}^{2} + \mu \Delta t \left\| \varepsilon(\mathbf{u}_{h}^{n+1}) \right\|_{L^{2}(\Omega)}^{2} \right. \\ & + \kappa \left\| \left\| \frac{\partial \mathbf{X}_{\tilde{h}}^{n+1}}{\partial s} - \frac{\partial \mathbf{X}_{\tilde{h}}^{n}}{\partial s} \right\|_{L^{2}([0,L])}^{2} + \frac{2\Delta t}{h} \int_{\Gamma_{\tilde{h}}^{n} \cup \partial \Omega} [\![\mathbf{u}_{h}^{n+1}]\!]^{2} \, ds \\ & + \Delta t \sum_{i=1}^{2} \left(\mu \mathbf{j}_{i,h}(\mathbf{u}_{i,h}^{n+1}, \mathbf{u}_{i,h}^{n+1}) + 2J_{i,h}(p_{i,h}^{n+1}, p_{i,h}^{n+1}) \right) \right). \end{split}$$

Numerical Simulation: Energy

- Parameters: $\kappa=6$, $\mu=0.01$, h=1/32, and $\tilde{h}=1/m$ with $\gamma=10$.
- ullet Choose m so that $\max_{0 \leq j \leq m} \left\| \mathbf{X}^0(s_j) \mathbf{X}^0(s_{j+1}) \right\| < h/2.$

Conclusions

- Improved the finite element immersed boundary method using the cut finite element method.
- Optimal spatial convergence observed in steady-state implementation with Q2-P1 element.
- Unconditional energy stability.
 - Proven in theory.
 - Observed in numerical testing.

Future Work

- Improve temporal convergence of immersed boundary method.
- Prove optimal spatial convergence of CutFEM with immersed boundary using Q2-P1 element.
- Design, analyze, and implement domain decomposition algorithm.
- Cell chemotaxis model and implementation.
 - Couple interior and exterior of cell.

Thank you for your attention!

Questions?

References:

D. Boffi, L. Gastaldi, and L. Heltai. A finite element approach for the immersed boundary method. *Comput. Struct.*, Vol. 81, pp.491–501, 2003.

K. Dunn, R. Lui, and M. Sarkis. An unconditionally stable semi-implicit CutFEM for an interaction problem between an elastic membrane and an incompressible fluid. arXiv:1801.05794, in revision.

J. Guzmán and M. Olshanskii. Inf-sup stability of geometrically unfitted Stokes finite elements. arXiv:1605.09681, in revision.

P. Hansbo, M. G. Larson, and S. Zahedi, A cut finite element method for a Stokes interface problem. *Appl. Numer. Math.*, Vol. 85, pp. 90–114, 2014.

CRREL Ron Liston Seminar