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Motivation

Figure: Immersed interface
oscillating in fluid.

Goal: Couple fluid velocity and
pressure with forces generated by
immersed elastic structure.

Fluid initially at rest.

Infinitesimally thin membrane.

Initially deformed.
Bending and stretching allowed.

No external forces.
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Finite Element Methods

Finite element method: Numerical method that takes a larger
problem and break down into smaller parts (elements).

Necessary spaces of functions:

L2(Ω): All functions f such that ‖f ‖2
L2(Ω) =

∫
Ω
f 2 is finite.

H1(Ω): All functions f such that ‖f ‖2
H1(Ω) := ‖f ‖2

L2(Ω) + ‖∇f ‖2
L2(Ω)

is finite.
H1

0 (Ω): All functions f ∈ H1(Ω) such that f = 0 on ∂Ω.

Recall: Green’s identity (integration by parts)

−
∫

Ω
(∆u)v =

∫
Ω
∇u · ∇v −

∫
∂Ω

(∇u · n̂)v .

Kyle Dunn (WPI) A CutFEM IBM CRREL Ron Liston Seminar 4 / 30



Weak Formulation

Weak formulation: Multiply PDE by “sufficiently smooth” test
function v and integrate by parts.

Example: For Ω = [0, 1]× [0, 1] and f ∈ L2(Ω),{
−∆u = f on Ω

u = 0 on ∂Ω

becomes∫
Ω
∇u · ∇v −

∫
∂Ω
∇u · n̂v =

∫
Ω
fv , ∀v ∈ H1

0 (Ω).

Find u ∈ H1
0 (Ω) such that∫

Ω
∇u · ∇v =

∫
Ω
fv , ∀v ∈ H1

0 (Ω).
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Finite Element Approximation

Write approximate solution as sum
of M scaled “hat” functions φi :

uh =
M∑
i=1

ciφi .

For j = 1, . . . ,M, choose v = φj .

Yields M equations in M
variables.

Numerically solve

M∑
i=1

ci

∫
Ωh

∇φi ·∇φj =
M∑
i=1

∫
Ωh

f φj ,

for j = 1, . . . ,M.
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Figure: Example quadrilateral
mesh and Q1 basis function.
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Original Problem Setting

Solve incompressible Stokes
equations on Ω = (0, 1)2:

∂u

∂t
− µ∇ · ε(u) +∇p = F in Ω,

∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where ε(u) = 1
2

(
∇u + (∇u)T

)
.

Γ(t): Elastic structure immersed
in fluid domain Ω.

F: Forcing function defined later.

Figure: Example domain with
notation used throughout talk.
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Description of Γ

Cartesian coordinates of points on
Γ(t) denoted by X(s, t) such that

s in reference interval [0, L].
X(0, t) = X(L, t).

X(s, t) denotes position of a
material point at time t.

Parameter s considered a
Lagrangian coordinate.

Generally not arc length.
Can create “stretching” of Γ
with choice of parameterization.

Figure: Mapping from reference
interval to points on Γ(t).
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The Immersed Boundary Method

Original immersed boundary
method introduced by Charles
Peskin (1972).

Developed for numerical analysis
of cardiac blood flow.

General force defined by

F(x, t) =

∫ L

0
f(s, t)δ(x−X(s, t)) ds.

Simple model: Stressed initial
configuration, zero length at rest

f(s, t) = κ
∂2X

∂s2
(s, t).

Figure: Immersed boundary in
finite difference grid.
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Peskin (1972).

Developed for numerical analysis
of cardiac blood flow.

General force defined by

F(x, t) =

∫ L

0
f(s, t)δε(x−X(s, t)) ds.

Simple model: Stressed initial
configuration, zero length at rest

f(s, t) = κ
∂2X

∂s2
(s, t).

Figure: Dirac delta mollified to be
seen by grid points.
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Finite Element Immersed Boundary Method

Finite element approach
introduced by Boffi & Gastaldi.

Incorporates force accurately by
integrating over Dirac delta.

First-order accuracy obtained
near interface.

Error incurred from global
approximation of discontinuous
quantities and derivatives. Figure: Dramatization of fitting

global linear FEM approximation
to discontinuous pressure.
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One Potential Approach

Figure: Triangular mesh fitted to
interior subdomain.

Capture jumps by meshing each
subdomain.

Compute solution on interior
and exterior separately.

Meshing algorithms can be
expensive.

Subdomains change in time:

Allow mesh to deform, or
Re-mesh at each time step.
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The Cut Finite Element Method (CutFEM)

CutFEM partitions domains into
Ω1 (exterior) and Ω2 (interior).

Separate solution for Ω1 and Ω2

captures jumps.

Can prescribe jump of u, p, and
normal derivatives.

Optimal accuracy obtained
near interface.

Integrate over intersection of each
element with subdomain.

Weakly impose boundary and
jump conditions. Figure: Example meshes Ωe

i,h for
CutFEM with interface.
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Spatial Discretization

0 0.5 1

0

0.2

0.4

0.6

0.8

1

(a) DOFs: Blue ◦ for velocity,
red × for pressure

-0.2

0

1

0.2

0.4

0.5
1

0.50 0

(b) Discontinuous pressure

Uniform square mesh on Ω.

h: side length of each square.

Velocity space Vi ,h: Piecewise
biquadratic (continuous Q2) on Ωe

i ,h.

Pressure space Mi ,h : Piecewise linear
(discontinuous P1) on Ωe

i ,h.

For φi defined on Ωi , denote jump
across Γ by

JφK = φ1 − φ2

and average by

{φ} =
1

2
(φ1 + φ2).
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Nitsche’s Formulation for Laplace’s Equation

Strong form:

−∆ui = 0 in Ωi ,

J∇u · n̂K = g on Γ,

JuK = 0 on Γ,

u1 = 0 on ∂Ω.

Multiply by test function
and integrate by parts on
Ω1 and Ω2 separately.

After algebra, u1 and u2

coupled on Γ with jumps
and averages.

=⇒

Add penalty terms with γ > 0 to
enforce Dirichlet BCs (red).

Note: Can add terms for symmetry.

Weak form:

2∑
i=1

(∇ui ,∇vi )Ωi
− (J∇u · n̂K, {v})Γ

− ({∇u · n̂} , JvK)Γ − (∇u1 · n̂1, v1)∂Ω

+
γ

h
(JuK, JvK)Γ +

γ

h
(u1, v1)∂Ω = 0.
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CutFEM: Ghost Penalty

Add stabilizing “ghost penalty” terms to finite element problem:

ji,h(ui , vi ) =
1∑

`=0

∑
F∈FΓ

i,h

∫
F

h2`+1
[
∂

(`)
n̂F

(ε(ui )n̂F )
]
·
[
∂

(`)
n̂F

(ε(vi )n̂F )
]
,

Ji,h(pi , qi ) =
1∑

`=0

∑
F∈FΓ

i,h

∫
F

h2`+1
[
∂

(`)
n̂F

pi
] [

∂
(`)
n̂F

qi
]
.
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Steady-State Convergence

Velocity Pressure
1/h L2 Rate H1 Rate L2 Rate H1 Rate

8 1.6862e-2 2.1210e-1 1.0151e-1 1.7770e-0
16 3.0799e-4 54.8 1.1230e-2 18.9 1.2345e-2 8.2 7.2290e-1 2.5
32 1.6206e-5 19.0 1.2870e-3 8.7 2.0347e-3 6.1 3.0689e-1 2.4
64 1.0693e-6 15.2 2.0910e-4 6.2 4.7168e-4 4.3 1.4578e-1 2.1
128 7.6314e-8 14.0 3.2012e-5 6.5 2.0651e-4 2.3 7.0759e-2 2.1

Table: Error tables for the velocity and pressure..

Above table computed solving steady-state Stokes equations with
immersed interface.

Prescribed boundary conditions match actual solution.

Observe optimal spatial convergence rate.

Velocity: 8 in L2 norm, 4 in H1 norm.
Velocity: 4 in L2 norm, 2 in H1 norm.
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The Problem

Solve incompressible Stokes
equations on Ω1 and Ω2:

∂ui
∂t
− µ∇ · ε(ui ) +∇pi = 0 in Ωi (t),

∇ · ui = 0 in Ωi (t),

J(µε(u)− p)n̂K =
κ

|∂X∂s |
∂2X

∂s2
on Γ(t),

JuK = 0 on Γ(t),

u1 = 0 on ∂Ω.

Interface no-slip condition:

∂X

∂t
(s, t) = {u(X(s, t), t)} .

Figure: Problem separated into
two domains.
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Discretization of Domain

Figure: Each vertex of polygon
tracked and mapped to [0, L].

Γh̃: Polygonal approximation to
interface.

Sample X(s) at m + 1 points.
Evenly-spaced points in [0, L]
denoted by sj = j h̃ for h̃ = L/m
and j = 0, 1, . . . ,m.

Location of X(sj) updated using
fluid velocity at each time step.

Creates polygonal approximations
to subdomains Ωi ,h̃.
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Temporal Discretization

For ∆t > 0, discretize time
derivative by

∂un+1
i

∂t
≈

un+1
i − uni

∆t
.

Discrete no-slip condition:

Xn+1
j = Xn

j + ∆t
{
un+1(Xn

j )
}
.

Approximation spaces Vn
i ,h and

Mn
i ,h now time-dependent.

Compute un+1
i and pn+1

i on Ωn
i ,h̃

.
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Figure: Subdomains redefined
each time step.
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Numerical Simulation: Velocity
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Cut Finite Element IBM Algorithm

Define:

Y = Xn in the Explicit algorithm
Y = Xn+1 in the Semi-implicit algorithm

Steps:

1 Compute the force from jump condition

(
J(µε(un+1)− pn+1)n̂K, {v}

)
Γn = κ

∫ L

0

∂2Y

∂s2
· {v} ds

for vi ∈ Vn
i ,h, i = 1, 2.

2 Solve for un+1
i and pn+1

i for i = 1, 2 in finite element problem.

3 Update interface location Xn+1
j for j = 1, . . . ,m, using

Xn+1
j = Xn

j + ∆t{un+1(Xn
j )} for j = 0, . . . ,m.
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Energy Stability

Define the energy to be the sum of kinetic and elastic potential energy:

En := ‖un‖2
L2(Ω) + κ

∥∥∥∥∂Xn

∂s

∥∥∥∥2

L2([0,L])

.

Theorem (D.,Lui, Sarkis, 2018)

Let un+1
i ,h , pn+1

i ,h , and Xn+1
h̃

be solutions to the finite element problem at

time tn+1 with Y = Xn+1. Then the following inequality holds:

En+1 ≤En −
(∥∥un+1

h − unh
∥∥2

L2(Ω)
+ µ∆t

∥∥ε(un+1
h )

∥∥2

L2(Ω)

+ κ

∥∥∥∥∥∂X
n+1
h̃

∂s
−
∂Xn

h̃

∂s

∥∥∥∥∥
2

L2([0,L])

+
2∆t

h

∫
Γn
h̃
∪∂Ω

Jun+1
h K2 ds

+ ∆t
2∑

i=1

(
µji ,h(un+1

i ,h ,un+1
i ,h ) + 2Ji ,h(pn+1

i ,h , pn+1
i ,h )

))
.
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Numerical Simulation: Energy

Parameters: κ = 6, µ = 0.01, h = 1/32, and h̃ = 1/m with γ = 10.

Choose m so that max
0≤j≤m

∥∥X0(sj)− X0(sj+1)
∥∥ < h/2.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Time

18

19

20

21

22

23

24

25

26

27

E
n
e
rg

y

Semi-Implicit  t=0.05

Explicit  t=0.05

Semi-Implicit  t=0.01

Explicit  t=0.01

Kyle Dunn (WPI) A CutFEM IBM CRREL Ron Liston Seminar 27 / 30



Conclusions

Improved the finite element immersed boundary method
using the cut finite element method.

Optimal spatial convergence observed in steady-state
implementation with Q2-P1 element.

Unconditional energy stability.

Proven in theory.

Observed in numerical testing.
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Future Work

Improve temporal convergence of immersed boundary method.

Prove optimal spatial convergence of CutFEM with immersed
boundary using Q2-P1 element.

Design, analyze, and implement domain decomposition algorithm.

Cell chemotaxis model and implementation.

Couple interior and exterior of cell.

Kyle Dunn (WPI) A CutFEM IBM CRREL Ron Liston Seminar 29 / 30



Thank you for your attention!

Questions?
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