SPECIAL SEMINAR

Coordinated Technology Implementation Program Cold Weather Admixture Systems

Presented by Lynette Barna, Force Projection & Sustainment Branch

April 12 1-2:30 PM Abele Auditorium

A user-oriented, customer-based seminar on CWAS applications

BUILDING STRONG April/Darling

Extending the Season for Concrete Construction and Repair:

Cold Weather Admixture Systems *Putting It Into Practice!*

Lynette A. Barna

Cold Regions Research & Engineering Laboratory (CRREL) US Army Engineer Research & Development Center Hanover, NH Lynette.A.Barna@usace.army.mil 603-646-4503 (voice)

12 April 2016, Hanover, NH

Acknowledgements

Coordinated Technology Implementation Program webinar sponsor

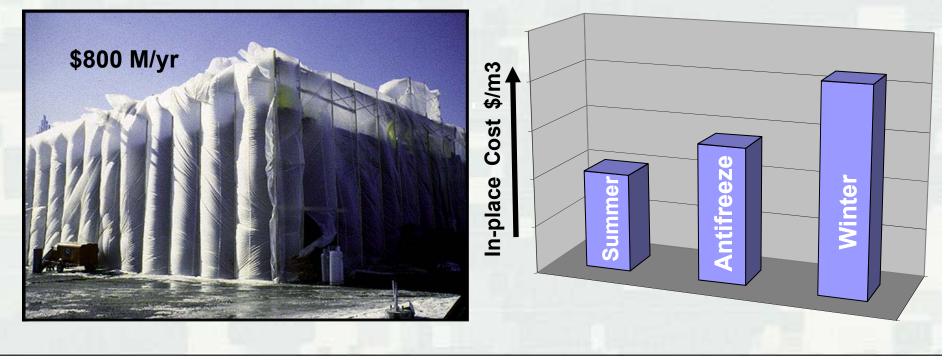
Federal Highway Administration Transportation Pooled Fund Program research funding

U.S. Army Office of the Assistant Chief of Staff for Installation Management (ACSIM) Installation Technology Transition Program demonstration funding

BUILDING STRONG_®

Outline

- Background
- Development of Cold Weather Admixture Systems Laboratory testing
- Application of Cold Weather Admixture Systems
 Field Testing
- Conclusions

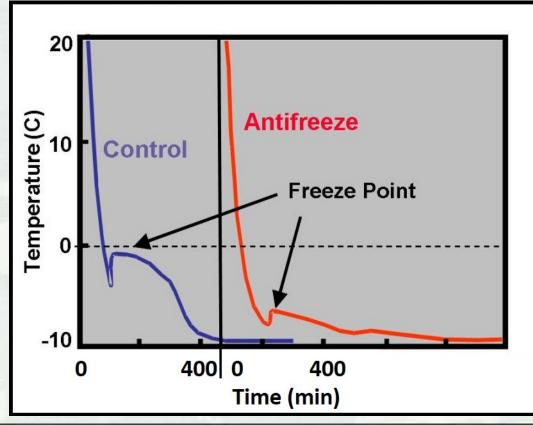

Background

- Problem
 - Cold weather
 - Low temperatures slow hydration rate of fresh normal concrete slows
 - Fresh concrete susceptible to freezing and damage
 - No single commercial admixture protects concrete below freezing

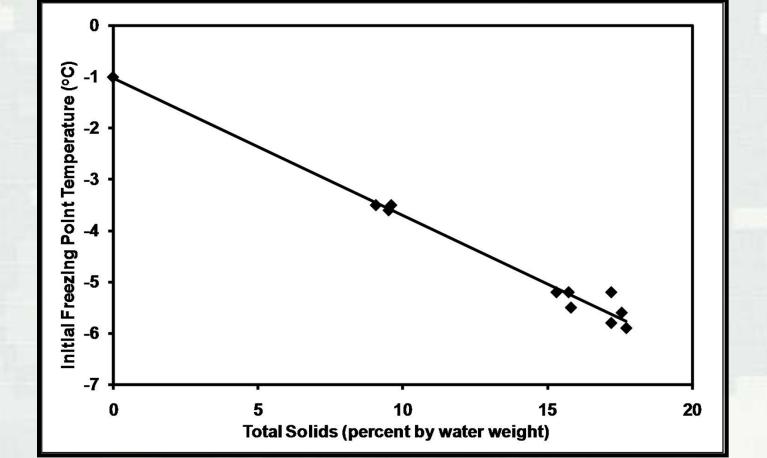
Solution

- Chemical admixture suites depress mix water freezing point
- Protects fresh concrete to an internal concrete temperature of –5°C (23°F)
- Promotes early strength gain at temperatures below freezing

- Benefits
 - Saves time and money <u>and</u> energy
 - No external heat required for water & aggregates, or substrate
 - Uses conventional construction practices and equipment
 - Provides an added capability to winter construction
 - Extends the concrete construction & repair season
 - Commercially available admixtures


Publications

- CRREL technical reports
- Peer reviewed papers and conference presentations
- ASTM C 1622 Standard Specification
- ACI 306 Guide to Cold Weather Concreting
- Website for links to publications
- Public search on: CRREL antifreeze concrete


Cold Weather Admixture Systems "Antifreeze Concrete"

- How Antifreeze Concrete works
 - Combinations of chemical admixtures
 - Accelerates the rate of cement hydration
 - Reduces the amount of water to protect
 - Initial freezing point temperature

Effects of water

- Relationship between admixtures and mix water content
- Account for water in admixtures

Laboratory Testing

- Performance Requirements for Laboratory Study
 - Dose admixtures within manufacturer's recommended range
 - Ensure workable concrete
 - Protect fresh concrete from freezing down to minimum of –5°C (23°F)
 - Gains compressive strength at –4.5°C (25°F) as good or better than curing at +5°C (40°F)
 - No adverse long-term durability effects
 - Compatible with steel reinforcement
 - Does not promote alkali-silica reaction
 - Accepts air entrainment
 - Does not adversely affect finishability
 - Does not present significant problems with equipment use and cleanup in cold weather

- Initial Laboratory Study Objectives
 - Develop antifreeze admixture concrete mixtures using commercially available (off-the-shelf) admixtures
 - To mix, place, finish, and cure concrete at below freezing temperatures

Scope

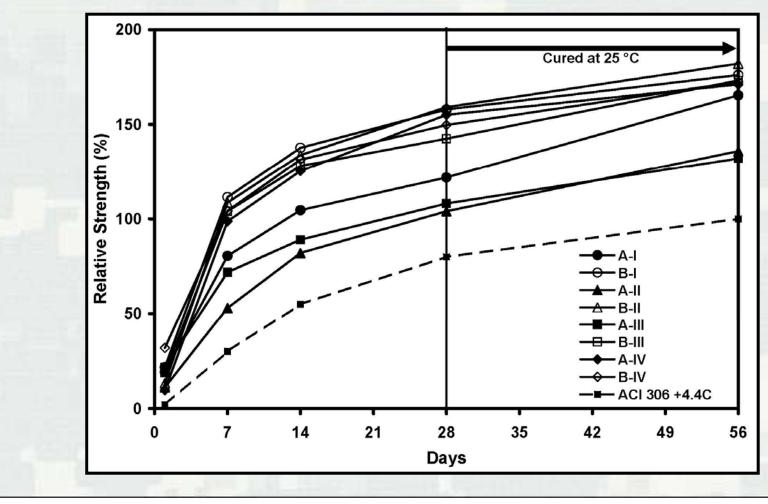
- Type I, Type II, or Type I-II portland cement (ASTM C 150)
- Cement factor 392 kg/m³(660 lbs/yd³) and w-c ratio 0.44
- Air content 6% (±1.5%) (ASTM C 173)
- Accept air entrainment (ASTM C 666, ACI 306)
- Slump 100 mm (4 in.) (ASTM C 143)
- Admixtures (ASTM C 494 or C 260)
- Initial freezing point measurement (CRREL method)
- Unconfined compressive strength testing (ASTM C 39)
- Several formulations tested in laboratory and used in field
- Blended cements and SCMs not considered (future study)

Laboratory Mixtures

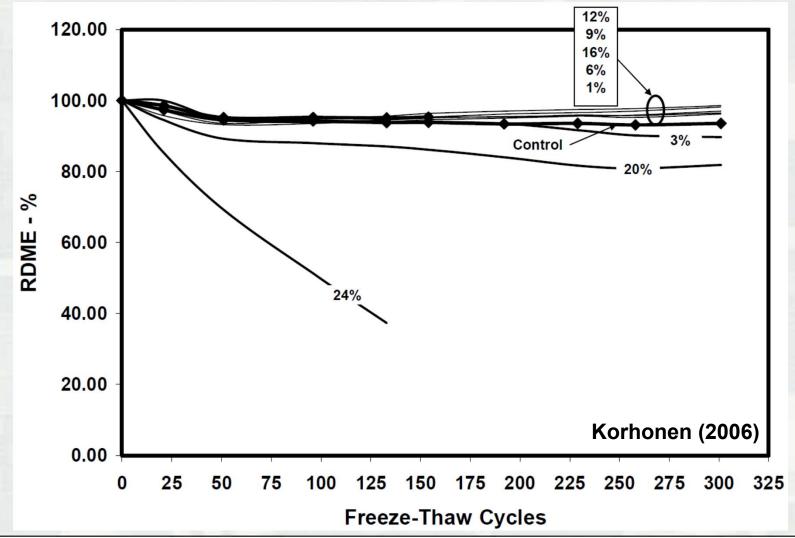
- Control

Mixture Component	Quantity		
Cement, kg/m ³ (lb/yd ³)	392 [660]		
³ ⁄4 in. aggregate, ssd*, kg/m ³ (lb/yd ³)	1079 [1819]		
Sand, ssd, kg/m³ (lb/yd³)	801 [1350]		
Batch water, L/m³ (gal./yd³)	171 [34.7]		
Air-entraining admixture, mL/100 kg (fl oz/cwt)	97 [1.49]		
Water-reducer, mL/100 kg (fl oz/cwt)	507 [7.78]		
Final water-cement ratio	0.436		
Target slump mm (in.)	100 ± 25 [4 ± 1]		

* saturated, surface dry


- Admixture combinations were added to this base mixture

Laboratory Mixtures


- Chemical Admixtures

Specification Standard		Description	
	Туре А	Water-reducing	
	Туре В	Retarding	
ASTM	Type C	Accelerating	
C 494	Type D	Water-reducing and retarding	
	Type E	Water reducing and accelerating	
	Type F	High-range water-reducing	
	Туре G	High-range water-reducing and retarding	
ASTM C 260		Air-entraining	
(None)		Corrosion-inhibiting	
(None)		Shrinkage-reducing	

- Laboratory Study
- Compressive strength development
- Antifreeze concrete cured at 25°F (–4°C)

- Laboratory Study
- Freeze-thaw durability testing

- Initial Laboratory Study Outcomes
 - Verified concrete mixture characteristics
 - Eight antifreeze formulations developed
 - Conducted four field trials and one final demonstration project

Findings

- Antifreeze mixtures workable, transportable, air entrainable
- Verified initial freezing point temperature of 23°F
- Compressive strength exceeded standard guidance
- Antifreeze mixtures can be durable
- Field trials showed this a feasible approach
- Developed tools for field use
- One size fits all

Follow-on research study

- Optimize admixture dosage rates
- Addressed one-size-fits-all dosage rates
- Specify admixture dosage rates based on forecasted weather

Findings

- Tailor the admixture dosage rates
- Added economy for the mixtures

Date	Location	
17-18 February 1994	Hanover, NH	Slab and Wall
15–17 March 1994	Sault Ste. Marie, MI	Pavement
10 December 2001	Littleton, NH	Bridge curbing
27 February 2002	Rhinelander, WI	Pavement
12 December 2002	North Woodstock, NH	Bridge footing
18 December 2002	West Lebanon, NH	Bridge curbing
14 February 2003	Concord, NH	Sidewalk
18 February 2004	New York, NY	Streets and sidewalks
23 February 2004	Grand Forks AFB, ND	Airfield pavement
7 February 2007	Juneau, AK	Pre-cast work
27 March 2007	Fairbanks, AK	Slabs on grade
25–27 March 2008	Ft. Wainwright, AK	Communications hardstand

	and the second	Overnight Air Temperature		
Date	°C(°F)	°C (°F)	Location	Member
10 December 2001	0°C(32°F)	-7°C (20°F)	Littleton, NH*	Bridge curbing
27 February 2002	-4°C (23°F)	-10°C(14°F)	Rhinelander, WI*	Pavement
12 December 2002	3°C (37°F)	-3°C (27 °F)	North Woodstock, NH*	Bridge footing
18 December 2002	-9°C(16°F)	-17 °C (1 °F)	West Lebanon, NH*	Bridge curbing
14 February 2003	-15°C(5°F)	-25°C(-13°F)	Concord, NH*	Sidewalk
25-27 March 2008	-10°C(14°F)	-15°C(5°F)	Fort Wainwright, AK†	Communications hardstand

* Korhonen et al. (2004)

† Barna et al. (2010)

Prior to job

Trial batch(es) slump air content concrete temperature

Day of job

Job Supervisor:

- be aware of weather forecast
- consider pre-construction meeting
- close coordination (in the beginning)

Truck Driver:

- avoid excess water
- slow agitation in transit
- use cold water for antifreeze concrete

Crew:

- substrate free of ice and snow
- substrate CAN BE frozen
- place / finish as normal
- cover with vapor barrier to retain moisture

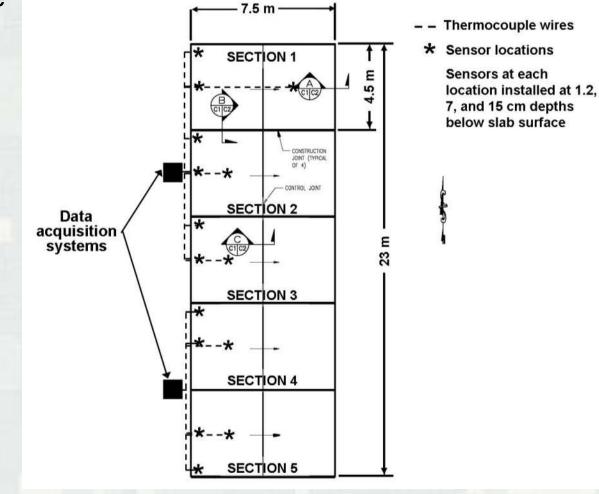
Field Testing the Technology

Air temp. = 14°F (Hi 28°F/Lo 0°F) Concrete temp. = 50°F

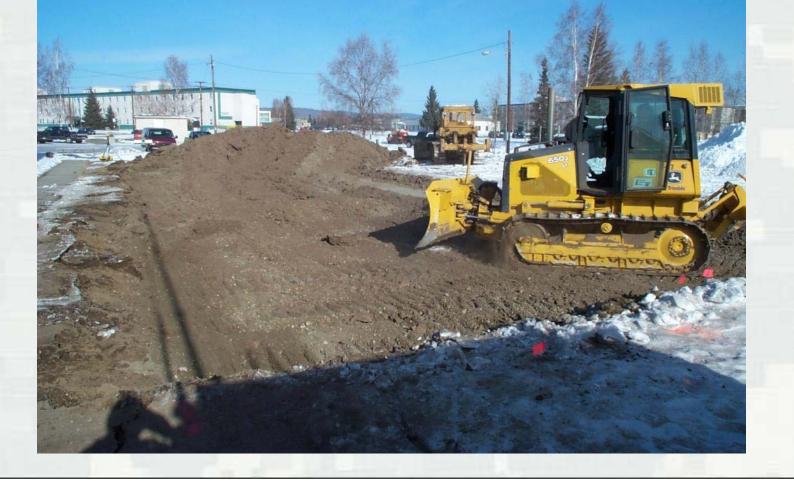
West Lebanon, NH (December 2002)

Concord, NH (February 2003)

West Lebanon, NH

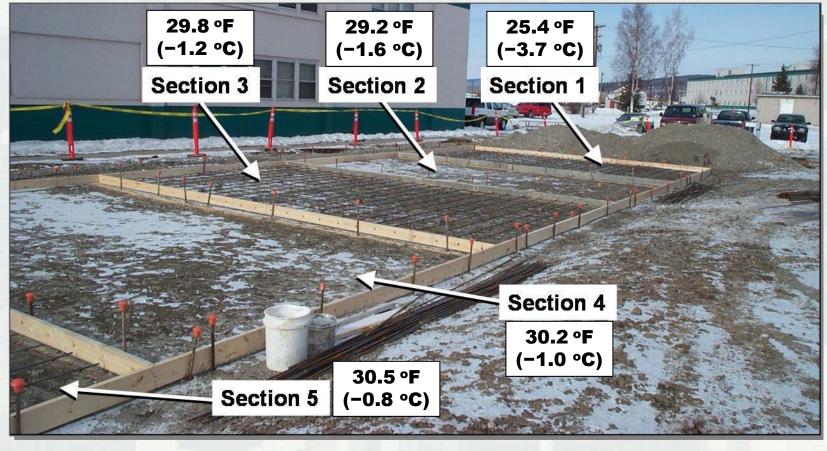

Both bridge curb sections placed during Winter 2002

Control concrete (October 2011)



Antifreeze concrete (October 2011)

- Ft. Wainwright, Alaska
 - March timeframe
 - Test site layout


- Ft. Wainwright, Alaska
 - Site preparation 1 week before concrete placement

• Ft. Wainwright, Alaska

- Five instrumented test sections
- Varying admixture dosages
- Frozen substrate

Base Concrete Mix

Cement (kg/m ³)	390
Coarse Aggregate (kg/m ³)	1,044
Fine Aggregate (kg/m ³)	800

Admixtures

Test Section	1	2	3	4	5
Water (L/m ³)	94	99.5	119	101	121
HRWR (mL/100kg)	521	456	319	391	261
Water Reducer & Accel (mL/100kg)	4,433	2,934	1,434	2,217	2,223
Corrosion Inhib (L/m ³)	19.8	14.9	7.4	11.4	11.4
Extra Water (L/m ³)	7.9	5.9	2.0		
w/c	0.39	0.39	0.38	0.38	0.47
Total Solids (%)	11.8	8.3	4.4	6.6	5.3

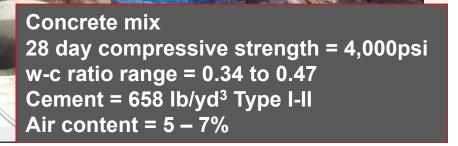
- Ft. Wainwright, Alaska
 - Day Before trial batch at ready-mix plant

Ft. Wainwright, Alaska – Day 1 of 2

Air Temp = 14°F Ground Temp = 21°F

Ft. Wainwright, Alaska – Day 1 of 2 10:30hrs

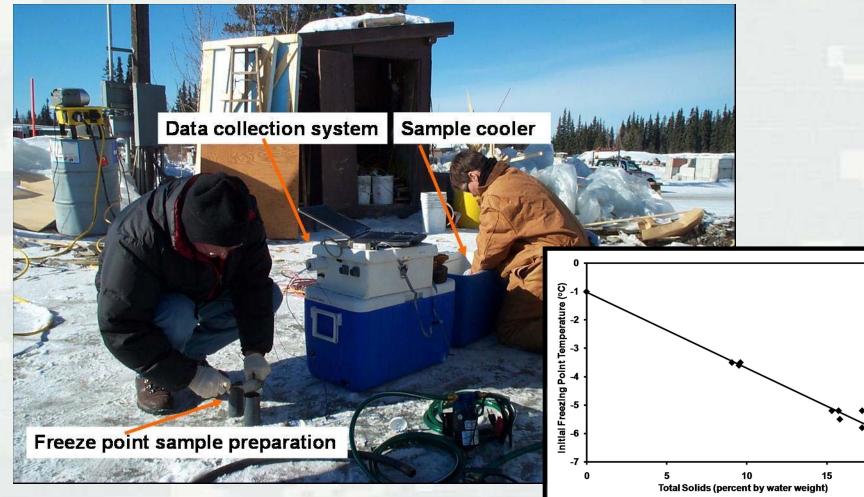
Ft. Wainwright, Alaska – Day 1 of 2 11:00hrs
Air Temp = 19°F Ground Temp = 23°F

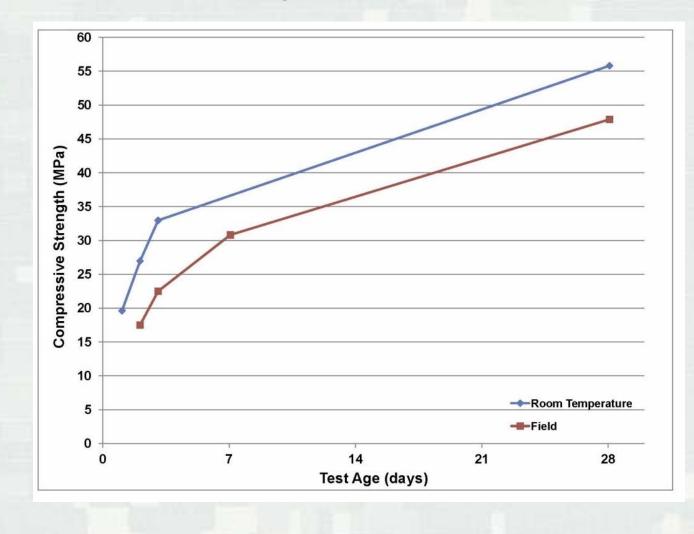

Ft. Wainwright, Alaska – Day 1 of 2

Section 3 Start time = 12n Completed before 13:30hrs Air Temp = 22°F

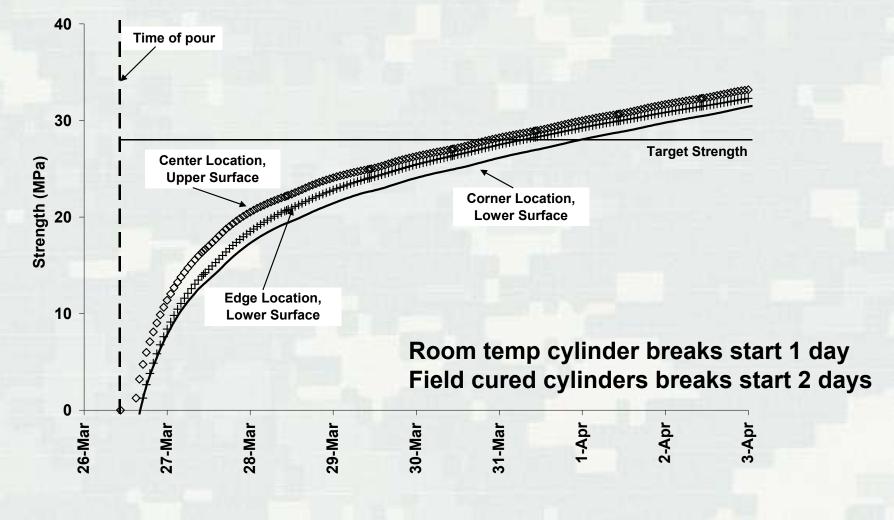
Section 5 Start time = 13:34hrs Completed by14:30hrs Air Temp = 24°F

Overnight: Minimum air temp = 5°F Day 2 Max/Min = 32°F / 3°F Day 3 Max/Min = 31°F / 0°F Day 4 Max/Min = 45°F / 20°F 140hrs temps stayed above freezing


Ft. Wainwright, Alaska - Day 1 of 2

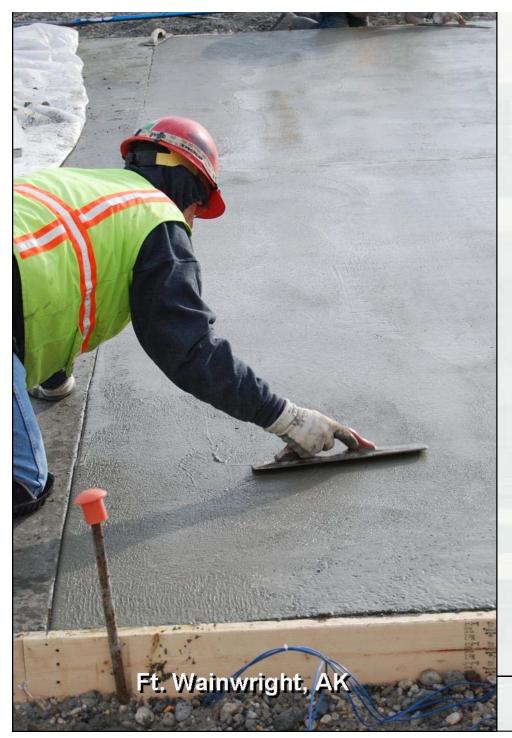

Measuring initial freezing point temperature

Tool to verify water-cement ratio


20

Compressive strength

Estimating Strength


Test Section 1

Conclusions

- Provided a general overview of Cold Weather Admixture Systems
- Provided the background of CWAS development
- Applied the approach in demonstration projects
- Developed tools and guidance to mix, place, and cure concrete at sub-freezing conditions
- Tailor admixture dosage on forecasted weather conditions
- Additional information is available on our website
- Shown the feasibility of using this approach to extend the concrete season
- Putting It Into Practice!

Questions?

Lynette A. Barna

Cold Regions Research & Engineering Laboratory US Army Engineer Research & Development Center 72 Lyme Road, Hanover, NH Lynette.A.Barna@usace.army.mil 603-646-4503 (voice)

BUILDING STRONG®