Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: July, 2022
Clear
  • Implementing Endangered Species Act (ESA) Section 7 (a)(1) Conservation Planning During US Army Corps of Engineers (USACE) Coastal Engineering

    Purpose: This technical note was developed by the US Army Engineer Research and Development Center–Environmental Laboratory (ERDC-EL) to provide guidance to the US Army Corps of Engineers (USACE) on implementing Endangered Species Act* (ESA) Section 7(a)(1) conservation planning, in coordination with the US Fish and Wildlife Service (USFWS) and the National Marine Fisheries Service (NMFS) during coastal engineering projects. USACE expends ~$200–$300 million each year on compliance, conservation, and other activities associated with the ESA (USACE 2022), and these expenditures often exceed those of other federal agencies (for example, US Bureau of Land Management) that have jurisdiction over far greater land holdings than USACE. To streamline the ESA compliance process, lower costs, and generate more positive outcomes for federally listed threatened and endangered species (TES), USACE was directed in June 2015 by the Deputy Commanding General (DCG) for Civil and Emergency Operations to proactively identify and incorporate conservation benefits into all projects when and where opportunities arise, under the authority of Section 7(a)(1) of the ESA (USACE 2015). The DCG identified Section 7(a)(1) conservation planning as a mechanism to efficiently achieve project purposes, create environmental value, and streamline the ESA Section 7(a)(2) consultation process
  • Leveraging Production Visualization Tools In Situ

    Abstract: The visualization community has invested decades of research and development into producing large-scale production visualization tools. Although in situ is a paradigm shift for large-scale visualization, much of the same algorithms and operations apply regardless of whether the visualization is run post hoc or in situ. Thus, there is a great benefit to taking the large-scale code originally designed for post hoc use and leveraging it for use in situ. This chapter describes two in situ libraries, Libsim and Catalyst, that are based on mature visualization tools, VisIt and ParaView, respectively. Because they are based on fully featured visualization packages, they each provide a wealth of features. For each of these systems we outline how the simulation and visualization software are coupled, what the runtime behavior and communication between these components are, and how the underlying implementation works. We also provide use cases demonstrating the systems in action. Both of these in situ libraries, as well as the underlying products they are based on, are made freely available as open-source products. The overviews in this chapter provide a toehold to the practical application of in situ visualization.
  • Impacts of Granular Activated Carbon (GAC) on Erosion Behavior of Muddy Sediment

    Abstract: Recent policy changes regarding the placement of dredged material have encouraged the USACE to increase its beneficial use (BU) of the sediments dredged from the nation’s navigation channels. A good portion of this material is fine grained (<63 mm), which traditionally has limited use in BU applications, in part due to its dispersive nature. A need exists to evaluate the potential of stabilizing and using fine-grained sediment (FGS) in BU projects. Previous studies have shown the addition of granular sand to FGS reduces the mobility of the bed. The potential of using Granular Activated Carbon (GAC), an amendment commonly used in environmental capping involving FGS, as a similar bed stabilizing material was explored in this study. A series of laboratory erosion tests using Sedflume were performed on FGS-GAC mixtures that ranged from 5% to 20% GAC by mass. Results suggested that GAC content ≤10% had no influence on the stability of the bed while GAC content ≥15% appeared to reduce both critical shear stress (τcr) and erosion rate (n). However, when compared to control cores, those without GAC, clear evidence of bed stabilization of FGS from the addition of GAC was not observed.
  • Scenario Analyses in Ecological Modeling and Ecosystem Management

    Purpose: Ecosystem management and restoration practitioners are challenged with complex problems, diverse project goals, multiple management alternatives, and potential future scenarios that change the systems of interest. Scenario analysis aids in forecasting, evaluating, and communicating outcomes of potential management actions under different plausible conditions, such as land-use change or sea level rise. However, little guidance exists for practitioners on the utility and execution of scenario analysis. Therefore, this technical note highlights the usefulness of scenario analysis as a tool for addressing uncertainty in potential project outcomes. The mechanics of the scenario-analysis process are explained, and examples of different types of scenario analyses are described for context on the breadth of its use. Lastly, two hypothetical case studies of scenario analysis in ecological modeling are presented showing a semiquantitative approach for assessing anadromous fish and a quantitative approach examining freshwater mussel habitat. Overall, this technical note provides a brief review of the utility and application of scenario analyses in the context of ecological modeling and ecosystem management decision-making.
  • Automatic Identification System Analysis Package User Guide

    Abstract: The Automatic Identification System Analysis Package (AISAP) enables acquisition, statistical analysis, and visualization of Automatic Identification System (AIS) data from historic vessel position reports. The web-based AISAP software allows the users to choose which data they want to examine for a specific geographic area, time period, and vessel type(s). Built-in features provide vessel characteristics, arrival and departure information within a geofenced area, vessel travel time between two locations, vessel track line plots, and relative density plots of AIS data reports. AISAP accesses the Nationwide Automatic Identification System database hosted by the United States Coast Guard. This user manual provides training exercises for users to follow to familiarize themselves with AISAP procedures and workflows. These training exercises also provide examples of AISAP products.
  • Baseline Data for a Cedar Tree Revetment Monitoring Site near Wichita, Kansas

    Purpose: This US Army Corps of Engineers (USACE) National Regional Sediment Management technical note (RSM-TN) documents baseline data collected at a cedar tree revetment installation on a small creek near Wichita, KS. These data can be used in subsequent years to add to the understanding of the longevity, effectiveness, and failure modes of cedar tree revetments as bank stabilization.
  • Effects of Impure Water Sources on Early-Age Properties of Calcium Sulfoaluminate Cements for Rapid Airfield Damage Recovery

    Abstract: In austere environments with limited access to clean water, it is advantageous to use nonpotable water for construction (i.e., mixing water for concrete.) In rapid-response situations such as rapid airfield damage recovery (RADR), the use of calcium sulfoaluminate (CSA) cements is beneficial for expedient pavement repairs because of their rapid strength gain characteristics. However, the hydration products formed by CSA cements are substantially different from those formed by ordinary portland cement and might react differently to impurities that water sources may contain. A laboratory study component investigated the application of various salts and impure sources of mixing water with commercially available CSA cement-based products. A field component studied the application of naturally occurring impure water sources for RADR. Recommendations are made for implementation of impure mixing water for RADR using commercially available flowable fill and concrete products made with CSA cement.
  • A Tutorial on the Rapid Distortion Theory Model for Unidirectional, Plane Shearing of Homogeneous Turbulence

    Abstract: The theory of near-surface atmospheric wind noise is largely predicated on assuming turbulence is homogeneous and isotropic. For high turbulent wavenumbers, this is a fairly reasonable approximation, though it can introduce non-negligible errors in shear flows. Recent near-surface measurements of atmospheric turbulence suggest that anisotropic turbulence can be adequately modeled by rapid-distortion theory (RDT), which can serve as a natural extension of wind noise theory. Here, a solution for the RDT equations of unidirectional plane shearing of homogeneous turbulence is reproduced. It is assumed that the time-varying velocity spectral tensor can be made stationary by substituting an eddy-lifetime parameter in place of time. General and particular RDT evolution equations for stochastic increments are derived in detail. Analytical solutions for the RDT evolution equation, with and without an effective eddy viscosity, are given. An alternative expression for the eddy-lifetime parameter is shown. The turbulence kinetic energy budget is examined for RDT. Predictions by RDT are shown for velocity (co)variances, one-dimensional streamwise spectra, length scales, and the second invariant of the anisotropy tensor of the moments of velocity. The RDT prediction of the second invariant for the velocity anisotropy tensor is shown to agree better with direct numerical simulations than previously reported.
  • Boronic Acid Functionalized Ferrocene Derivatives Towards Fluoride Sensing

    Abstract: In this technical report (TR), a robust, readily synthesized molecule with a ferrocene core appended with one or two boronic acid moieties was designed, synthesized, and used toward F- (free fluoride) detection. Through Lewis acid-base interactions, the boronic acid derivatives are capable of binding with F- in an aqueous solution via ligand exchange reaction and is specific to fluoride ion. Fluoride binding to ferrocene causes significant changes in fluorescence or electrochemical responses that can be monitored with field-portable instrumentation at concentrations below the WHO recommended limit. The F- binding interaction was further monitored via proton nuclear magnetic resonance spectroscopy (1H-NMR). In addition, fluorescent spectroscopy of the boronic acid moiety and electrochemical monitoring of the ferrocene moiety will allow detection and estimation of F- concentration precisely in a solution matrix. The current work shows lower detection limit (LOD) of ~15 µM (285 μg/L) which is below the WHO standards. Preliminary computational calculations showed the boronic acid moieties attached to the ferrocene core interacted with the fluoride ion. Also, the ionization diagrams indicate the amides and the boronic acid groups can be ionized forming strong ionic interactions with fluoride ions in addition to hydrogen bonding interactions.
  • USACE Navigation Sediment Placement: An RSM Program Database (1998 – 2019)

    Abstract: This US Army Corps of Engineers, Regional Sediment Management, technical note describes a geodatabase of federal coastal and inland navigation projects developed to determine the extent to which RSM goals have been implemented across the USACE at the project and district levels. The effort 1) quantified the volume of sediment dredged from federal navigation channels by both contract and USACE-owned dredges and 2) identified the placement type and whether sediment was placed beneficially. The majority of the dredging data used to populate the geodatabase were based on the USACE Dredging Information System DIS database, but when available, the geodatabase was expanded to include more detailed USACE district-specific data that were not included in the DIS database. Two datasets were developed in this study: the National Dataset and the District-Specific and Quality-Checked Dataset. The National Dataset is based on statistics extracted from the combined DIS Contract and Government Plant data. This database is a largely unedited database that combined two available USACE datasets. Due to varying degrees of data completeness in these two datasets, this study undertook a data refinement process to improve the information. This was done through interviews with the districts, literature search, and the inclusion of additional district-specific data provided by individual districts that often represent more detailed information on dredging activities. The District-Specific and Quality-Checked Database represents a customized database generated by this study. An interactive web-based tool was developed that accesses both datasets and displays them on a national map that can be viewed at the district or project scale