Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: 2022
Clear
  • Realizing Multiple Benefits in a Southeast Louisiana Urban Flood Control Project through Application of Engineering With Nature® Principles

    PURPOSE: The application of Engineering With Nature® (EWN®) principles in urban environments and watersheds within and outside the US Army Corps of Engineers (USACE) is increasing. Extreme rainfall events have triggered the need and development of more sustainable urban infrastructure in urban areas such as New Orleans, Louisiana. This technical note documents a USACE–New Orleans District (MVN) project that successfully applied EWN principles in an urban landscape to reduce flood risk while providing other environmental, social, economic, and engineering benefits to both the community and the environment.
  • Oyster Reef Connectivity: Ecological Benefits and Associated Vulnerabilities

    OVERVIEW: Global oyster abundance has declined ~85 % over the past 200 years, primarily because of overharvesting (Beck, Brumbaugh, and Airoldi 2011; Kirby 2004). Healthy oyster reef systems benefit the environment in many ways, including water-quality improvement, shoreline protection, increased biological and habitat diversity, and carbon sequestration. To maintain these environmental benefits, reef-restoration efforts that produce healthy, sustainable oyster reefs are essential. To this end, the US Army Corps of Engineers (USACE) has been involved in reef-restoration projects in many locations, including extensive efforts in the Chesapeake Bay (Virginia, Maryland), coastal regions of New York and New Jersey, and the Gulf of Mexico.
  • Evaluation of Unmanned Aircraft Systems for Flood Risk Management: Results of Terrain and Structure Assessments

    Abstract: The 2017 Duck Unmanned Aircraft Systems (UAS) Pilot Experiment was conducted by the US Army Engineer Research and Development Center (ERDC), Coastal and Hydraulics Laboratory, Field Research Facility (FRF), to assess the potential for different UAS to support US Army Corps of Engineers coastal and flood risk management. By involving participants from multiple ERDC laboratories, federal agencies, academia, and private industry, the work unit leads were able to leverage assets, resources, and expertise to assess data from multiple UAS. This report compares datasets from several UAS to assess their potential to survey and observe coastal terrain and structures. In this report, UAS data product accuracy was analyzed within the context of three potential applications: (1) general coastal terrain survey accuracy across the FRF property; (2) small-scale feature detection and observation within the experiment infrastructure area; and (3) accuracy for surveying coastal foredunes. The report concludes by presenting tradeoffs between UAS accuracy and the cost to operate to aid in selection of the best UAS for a particular task. While the technology and exact UAS models vary through time, the lessons learned from this study illustrate that UAS are available at a variety of costs to satisfy varying coastal management data needs.
  • A Community Engagement Framework Using Mental Modeling: The Seven Mile Island Innovation Lab Community Engagement Pilot—Phase I

    Abstract: The US Army Corps of Engineers (USACE) engages and collaborates with multiple stakeholders—from agency partners, to public, private, and not-for-profit organizations, to community residents—to develop its dredged-sediment long-term management strategy (LTMS) that expands beneficial-use (BU) practices. In spring 2019, USACE collaborated with Decision Partners, the USACE–Philadelphia District Operations Division, The Wetlands Institute, and the Engineering With Nature program leadership to adapt, test, and refine the proven behavioral-science-based processes, methods, and tools based on Decision Partners’ Mental Modeling Insight, or MMI, approach for engaging stakeholders, including community members, as part of the Seven Mile Island Innovation Laboratory (SMIIL) initiative in coastal New Jersey. The team identified key community stakeholders and conducted research to better understand their values, interests, priorities, and preferences regarding wetlands and USACE activities in the Seven Mile Island area and those activities’ effects on wetlands, including protecting the environment, wildlife habitat, aesthetic beauty, maintaining navigability, and supporting coastal resilience. Understanding stakeholder needs, values, interests, priorities, and preferences is key to designing effective engagement strategies for diverse communities for SMIIL and provides a foundation for the community engagement framework currently being developed for application across USACE.
  • The Use of US Army Corps of Engineers Reservoirs as Stopover Sites for the Aransas–Wood Buffalo Population of Whooping Crane

    Abstract: This technical report summarizes the use of US Army Corps of Engineers (USACE) reservoirs as spring and fall migration stopover sites for the endangered Aransas–Wood Buffalo population of whooping cranes (WHCR), which proved much greater than previously known. We assessed stopover use within the migration flyway with satellite transmitter data on 68 WHCR during 2009–2018 from a study by the US Geological Survey (USGS) and collaborators, resulting in over 165,000 location records, supplemented by incidental observations from the US Fish and Wildlife Service (USFWS) and the USGS Biodiversity Information Serving Our Nation (BISON) databases. Significant stopover use was observed during both spring and fall migration, and one reservoir served as a wintering location in multiple years. Future efforts should include (a) continued monitoring for WHCR at USACE reservoirs within the flyway; (b) reservoir-specific management plans at all projects with significant WHCR stopover; (c) a USACE-specific and range-wide Endangered Species Act Section 7(a)(1) conservation plan that specifies proactive conservation actions; (d) habitat management plans that include potential pool-level modifications during spring and fall to optimize stopover habitat conditions; and (e) continued evaluation of habitat conditions at USACE reservoirs.
  • South Pole Station Snowdrift Model

    Abstract: The elevated building at Scott-Amundsen South Pole Station was designed to mitigate the effects of windblown snow on it and the surrounding infrastructure. Because the elevation of the snow surface increases annually, the station is periodically lifted on its support columns to maintain its design height above the snow surface. To assist with planning these lifts, this effort developed a computational model to simulate snowdrift formation around the elevated building. The model uses computational fluid dynamics methods and synthetic wind record generation derived from statistical analysis of meteorological data. Simulations assessed the impact of several options for the lifting operation on drifts surrounding the elevated building. Simulation results indicate that raising the eastern-most building section (Pod A), or the entire station all at once, can reduce drift accumulation rates over the nearby arches structures. Long-term analyses, spanning 5–6 years, determine whether an equilibrium drift condition may be reached after a long period of undisturbed drift development. These simulations showed that after about 6 years, the rate of growth of the upwind drift slows, appearing to approach an equilibrium condition. However, the adjacent drifts were still increasing in depth at a roughly linear rate, indicating that equilibrium for those drifts was still several seasons away.
  • SAGE-PEDD Theory Manual: Modeling Windblown Snow Deposition around Buildings

    Abstract: Numerical modeling of snowdrifting is a useful tool for assessing the im-pact of building design on operations and facility maintenance. Here we outline the theory for the SAGE-PEDD snowdrift model that has applica-tion for determining snowdrift accumulation around buildings. This model uses the SAGE computational fluid dynamics code to determine the flow field in the computational domain. A particle entrainment, dis-persion, and deposition (PEDD) model is coupled to SAGE to simulate the movement and deposition of the snow within the computational do-main. The report also outlines areas of future development that upgrades to the SAGE-PEDD model should address.
  • SAGE-PEDD User Manual

    Abstract: SAGE-PEDD is a computational model for estimating snowdrift shapes around buildings. The main inputs to the model are wind speed, wind direction, building geometry and initial ground or snow-surface topography. Though developed mainly for predicting snowdrift shapes, it has the flexibility to accept other soil types, though this manual addresses snow only. This manual provides detailed information for set up, running, and viewing the output of a SAGE-PEDD simulation.
  • Simulating Environmental Conditions for Southwest United States Convective Dust Storms Using the Weather Research and Forecasting Model v4.1

    Abstract: Dust aerosols can pose a significant detriment to public health, transportation, and tactical operations through reductions in air quality and visibility. Thus, accurate model forecasts of dust emission and transport are essential to decision makers. While a large number of studies have advanced the understanding and predictability of dust storms, the majority of existing literature considers dust production and forcing conditions of the underlying meteorology independently of each other. Our study works towards filling this research gap by inventorying dust-event case studies forced by convective activity in the Desert Southwest United States, simulating select representative case studies using several configurations of the Weather Research and Forecasting (WRF) model, testing the sensitivity of forecasts to essential model parameters, and assessing overall forecast skill using variables essential to dust production and transport. We found our control configuration captured the initiation, evolution, and storm structure of a variety of convective features admirably well. Peak wind speeds were well represented, but we found that simulated events arrived up to 2 hours earlier or later than observed. Our results show that convective storms are highly sensitive to initialization time and initial conditions that can preemptively dry the atmosphere and suppress the growth of convective storms.
  • Engineering With Nature® Principles in Action: Islands

    Abstract: The Engineering With Nature® (EWN) Program supports nature-based solutions that reduce coastal-storm and flood risks while providing environmental and socioeconomic benefits. Combining the beneficial use of dredged sediments with the restoration or creation of islands increases habitat and recreation, keeps sediment in the system, and reduces coastal-storm and flood impacts. Given the potential advantages of islands, EWN seeks to support science-based investigations of island performance, impacts, and benefits through collaborative multidisciplinary efforts. Using a series of case studies led by US Army Corps of Engineers (USACE) districts and others, this technical report highlights the role of islands in providing coastal resilience benefits in terms of reducing waves and erosion as well as other environmental and socioeconomic benefits to the communities and the ecosystems they reside in.