Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Archive: June, 2021
Clear
  • In situ analysis and visualization to enable better workflows with CREATE-AV™ Helio

    Abstract: The CREATE-AV™ Helios CFD simulation code has been used to accurately predict rotorcraft performance under a variety of flight conditions. The Helios package contains a suite of tools that contain almost the entire set of functionality needed for a variety of workflows. These workflows include tools customized to properly specify many in situ analysis and visualization capabilities appropriate for rotorcraft analysis. In situ is the process of computing analysis and visualization information during a simulation run before data is saved to disk. In situ has been referred to with a variety of terms including co-processing, covisualization, coviz, etc. In this paper we describe the customization of the pre-processing GUI and corresponding development of the Helios solver code-base to effectively implement in situ analysis and visualization to reduce file IO and speed up workflows for CFD analysts. We showcase how the workflow enables the wide variety of Helios users to effectively work in post-processing tools they are already familiar with as opposed to forcing them to learn new tools in order post-process in situ data extracts being produced by Helios. These data extracts include various sources of information customized to Helios, such as knowledge about the near- and off-body grids, internal surface extracts with patch information, and volumetric extracts meant for fast post-processing of data. Additionally, we demonstrate how in situ can be used by workflow automation tools to help convey information to the user that would be much more difficult when using full data dumps.
  • Elevation of underlying basement rock, Ogdensburg Harbor, NY

    Abstract: Over six linear miles of shallow acoustic reflection geophysical data were collected in an 800 ft by 300 ft survey region at Ogdensburg Harbor, Ogdensburg, NY. To better accommodate modern commercial vessels and expand the harbor’s capacity, the current navigable depth of -19 ft Low Water Depth (LWD) needs to be increased to -28 ft LWD, and an accurate map of the nature of the riverbed material (e.g., unconsolidated sediment, partially indurated glacial till, or bedrock) is required to effectively plan for removal. A total of 28 boreholes were previously collected to map the stratigraphy, and the effort revealed significant spatial variability in unit thickness and elevation between adjacent boreholes. To accurately map this variable stratigraphy, chirp sub-bottom profiles were collected throughout the region, with an average line spacing of 13 ft. These sub-bottom data, validated and augmented by the borehole data, resulted in high-resolution spatial maps of stratigraphic elevation and thickness for the study area. The data will allow for more accurate assessment of the type and extent of different dredging efforts required to achieve a future uniform depth of -28 ft LWD for the navigable region.
  • AIS data case study: quantifying connectivity for six Great Lakes port areas from 2015 through 2018

    Abstract: This Coastal and Hydraulics Engineering Technical Note presents results from a preliminary examination of commercial vessel traffic connectivity between six major port areas on the Great Lakes using Automatic Identification System data collected from 2015 to 2018. The six port areas included in this study are Calumet Harbor, IL and IN; Cleveland, OH; Detroit, MI; Duluth-Superior, MN and WI; Indiana Harbor, IN; and Two Harbors, MN. These six locations represent an important subset of the more than 100 federally authorized navigation projects in the Great Lakes maintained by the US Army Corps of Engineers. The results are presented in the context of USACE resilience-related policy initiatives as well as the larger topic of maritime system resilience.
  • Multi-objective source scaling experiment

    Abstract: The U.S. Army Engineer Research and Development Center (ERDC) performed an experiment at a site near Vicksburg, MS, during May 2014. Explosive charges were detonated, and the shock and acoustic waves were detected with pressure and infrasound sensors stationed at various distances from the source, i.e., from 3 m to 14.5 km. One objective of the experiment was to investigate the evolution of the shock wave produced by the explosion to the acoustic wavefront detected several kilometers from the detonation site. Another objective was to compare the effectiveness of different wind filter strategies. Toward this end, several sensors were deployed near each other, approximately 8 km from the site of the explosion. These sensors used different types of wind filters, including the different lengths of porous hoses, a bag of rocks, a foam pillow, and no filter. In addition, seismic and acoustic waves produced by the explosions were recorded with seismometers located at various distances from the source. The suitability of these sensors for measuring low-frequency acoustic waves was investigated.