Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Energetic compounds
Clear
  • Live-Fire Validation of Command-Detonation Residues Testing Using an 81 mm IMX-104 Munition

    Abstract: Postdetonation energetic residues can have environmental impacts that present a risk to military training-range sustainment. As munitions with new explosive formulations are developed and fielded, quantitative methods for assessing their residues are needed. Command detonation (i.e., static firing) allows residue testing to occur early in the acquisition process; however, its representation of live-fire residue production is uncertain due to differences in the initiation mechanism and cartridge orientation. This study aims to validate residue testing by command detonation through statistical comparison of residue deposition rates between live fire and command detonation. Live-fire residues were collected from fourteen 81 mm IMX-104 mortar cartridges fired onto snow, and deposition rates were compared with previous command-detonation tests of the same munition. Average live-fire deposition rates were 8000 mg NTO (3-nitro-1,2,4-triazol-5-one), 60 mg DNAN (2,4-dinitroanisole), 20 mg RDX (1,3,5-trinitroperhydro-1,3,5-triazine), and 2 mg HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) per cartridge. Compared to command detonation, live fire of the study munition produced significantly greater residues of NTO (p < 0.0001) and RDX (p = 0.01) but not DNAN (p = 0.067). Although absolute deposition rates of some IMX-104 compounds differed, command detonation was successful at predicting the order of magnitude of each IMX-104 compound for the studied 81 mm munition.
  • Live-Fire Validation of Command-Detonation Residues Testing Using a 60 mm IMX-104 Munition

    Abstract: Command detonation (i.e., static firing) provides a method of testing munitions for their postdetonation residues early in the acquisition process. However, necessary modifications to the firing train and cartridge orientation raise uncertainty whether command detonation accurately represents residue deposition as it occurs during live-fire training. This study collected postdetonation residues from live-fired 60 mm IMX-104 mortar cartridges and then compared estimated energetic-compound deposition rates between live fire and prior command detonations of the same munition. Average live-fire deposition rates of IMX-104 compounds deter-mined from 11 detonations were 3800 mg NTO (3-nitro-1,2,4-triazol-5-one), 34 mg DNAN (2,4-dinitroanisole), 12 mg RDX (1,3,5-Trinitroperhydro-1,3,5-Triazine), and 1.9 mg HMX (1,3,5,7-Tetranitro-1,3,5,7-Tetrazocane) per cartridge. Total live-fire residue deposition (mean ± standard deviation: 3800 ± 900 mg/cartridge) was not significantly different from command detonation using a representative fuze simulator (3800 ± 900 mg/cartridge, n = 7, p = 0.76) but was significantly different from command detonation using a simplified fuze simulator (2200 ± 500 mg/cartridge, n = 7, p < 0.01). While the dominant residue compound NTO was broadly similar between live fire and command detonation, the minor residue compounds RDX and DNAN were underestimated during command detonation by a factor of approximately three to seven.