Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Sediment transport--Numerical analysis
Clear
  • Physical Factors That Influence Muddy Bed Aggregate Production, Size, and Durability

    Abstract: Aggregation state significantly influences the transport characteristics of fine sediments. While research has documented the presence of mud aggregates in multiple coastal and estuarine environments, bed aggregates are largely absent from numerical models used to predict cohesive sediment transport. The U.S. Army Corps of Engineers (USACE) is conducting studies to evaluate the impact muddy bed aggregates have on sediment management issues, and how to account for aggregates in numerical models. In this study, physical properties associated with cohesive behavior were evaluated to determine if they could be used as predictors for bed aggregate production, size, and durability. Results showed that aggregates were consistently produced in cohesive sediments, and that median aggregate size was ~10-450x larger than the disaggregated sediment. Clay content had strong correlation with relative aggregate size, though statistically significant correlations were also found with sand content, water content, and density. Durability testing indicated that aggregate break-up followed exponential models, and that in limited instances, rates of break-up correlated with organic content.
  • PUBLICATION NOTICE: A Comparison of GenCade,  Pelnard-Considere, and LITPACK

    PURPOSE: The purpose of this Coastal and Hydraulics Engineering Technical Note (CHETN) is to investigate the basic physics and numerical code of GenCade by running a series of simplified test cases and comparing the results to another numerical shoreline evolution model and an analytical solution. The complementary numerical code is the widely used shoreline evolution model LITPACK. The analytical model is the original solution derived by Pelnard-Considere (1956). The underlying assumption in all three approaches is a beach profile of constant shape so that shoreline change is driven by long-shore transport processes and a combination of independent sediment sources or sinks (e.g., sea level change, subsidence). The CHETN presents a descriptive overview of the theory behind the models followed by an inter-comparison using a set of four test cases involving shoreline change in the vicinity of idealized coastal structures and a beach nourishment. GenCade shows good agreement with LITPACK, and both models compare well to the analytical solution for these idealized cases. The GenCade results indicate that the underlying numerical code and basic physical process are consistent with other widely used shoreline modeling systems.
  • PUBLICATION NOTICE: Numerical Sedimentation Investigation Mississippi River Cairo to Pilots Station

     Link: http://dx.doi.org/10.21079/11681/35573 Report Number: MRG&P Report No. 30Title: Numerical Sedimentation Investigation Mississippi River Cairo to Pilots StationBy Ronald R. Copeland, Leslie Lombard, Roger A. GainesApproved for Public Release; Distribution is Unlimited February 2020Abstract:  A HEC-6T numerical model of the entire Lower