Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Tag: Water waves
Clear
  • A Large-Scale Community Storm Processes Field Experiment: The During Nearshore Event Experiment (DUNEX) Overview Reference Report

    Abstract: The DUring Nearshore Event EXperiment (DUNEX) was a series of large-scale nearshore coastal field experiments focused on during-storm, nearshore coastal processes. The experiments were conducted on the North Carolina coast by a multidisciplinary group of over 30 research scientists from 2019 to 2021. The overarching goal of DUNEX was to collaboratively gather information to improve understanding of the interactions of coastal water levels, waves, and flows, beach and dune evolution, soil behavior, vegetation, and groundwater during major coastal storms that affect infrastructure, habitats, and communities. In the short term, these high-quality field measurements will lead to better understanding of during-storm processes, impacts and post-storm recovery and will enhance US academic coastal research programs. Longer-term, DUNEX data and outcomes will improve understanding and prediction of extreme event physical processes and impacts, validate coastal processes numerical models, and improve coastal resilience strategies and communication methods for coastal communities impacted by storms. This report focuses on the planning and preparation required to conduct a large-scale field experiment, the collaboration amongst researchers, and lessons learned. The value of a large-scale experiment focused on storm processes and impacts begins with the scientific gains from the data collected, which will be available and used for decades to come.
  • Sediment Mobility, Closure Depth, and the Littoral System – Oregon and Washington Coast

    Abstract: Forty years ago, the depth of closure concept was introduced to provide a systematic, process-based approach to evaluate seasonal changes in cross-shore profiles and sediment mobility in the nearshore. This study aims to extend that theory by directly considering wave-asymmetry in the nearshore environment. This technical note introduces a methodology to calculate wave induced dispersal of dredged material placed in nearshore sites and summarizes analyses validating the approach using data from the South Jetty Site at the Mouth of the Columbia River. This investigation highlights the notion of a cross-shore gradient in nearshore placement effectiveness of dredged material that can assist project managers plan and execute sustainable sediment management practices at coastal inlets.
  • Walter Marine and Atlantic Reefmaker Wave Attenuator: Wave Transmission Testing Results

    Abstract: As part of a testing service agreement with Walter Marine and Atlantic Reefmaker, a 1:5.2 physical model of the Reefmaker Wave Attenuator was constructed and tested by the US Army Engineer Research and Development Center to evaluate its influence on wave attenuation. The tested prototype wave periods ranged from 2.5 to 8 sec with prototype wave heights between 1 ft and 6.5 ft. The Reefmaker Wave Attenuator included orthogonal and square designs and was tested under a variety of configurations including a suspended configuration, a bed-mounted configuration, and a rotated configuration. Testing demonstrated that depending on configurations and wavelength, the wave transmission coefficients ranged from 0.29 to 0.70. The most improvement, however, was demonstrated when testing the square unit designs with transmission coefficients, kt, below 0.51. The smallest kt of 0.29 occurred during square unit testing, which consisted of eight bed-mounted, square Ecosystem disks plus a base unit (24.05 in. freeboard) and with a wave period of 3.0 sec and height of 0.84 ft. Of all 134 tests performed, including the suspended case, the average transmission through the structure was 58%.
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 4 – Freeport

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Freeport CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 3 – Orange County

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level (SWL) and wave hazards for the Orange County CSRM structures. Coastal SWL and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering, and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 2 – Port Arthur

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP values for overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide elevations.
  • Sabine Pass to Galveston Bay, TX Pre-Construction, Engineering and Design (PED): Coastal Storm Surge and Wave Hazard Assessment: Report 1 – Background and Approach

    Abstract: The US Army Corps of Engineers, Galveston District, is executing the Sabine Pass to Galveston Bay Coastal Storm Risk Management (CSRM) project for Brazoria, Jefferson, and Orange Counties regions. The project is currently in the Pre-construction, Engineering, and Design phase. This report documents coastal storm water level and wave hazards for the Port Arthur CSRM structures. Coastal storm water level (SWL) and wave loading and overtopping are quantified using high-fidelity hydrodynamic modeling and stochastic simulations. The CSTORM coupled water level and wave modeling system simulated 195 synthetic tropical storms on three relative sea level change scenarios for with- and without-project meshes. Annual exceedance probability (AEP) mean values were reported for the range of 0.2 to 0.001 for peak SWL and wave height (Hm0) along with associated confidence limits. Wave period and mean wave direction associated with Hm0 were also computed. A response-based stochastic simulation approach is applied to compute AEP runup and overtopping for levees and overtopping, nappe geometry, and combined hydrostatic and hydrodynamic fluid pressures for floodwalls. CSRM structure crest design elevations are defined based on overtopping rates corresponding to incipient damage. Survivability and resilience are evaluated. A system-wide hazard level assessment was conducted to establish final recommended system-wide CSRM structure elevations.
  • PUBLICATION NOTICE: Shallow Water Seakeeping Tests with Columbia Class Submarine for Integration into the Environmental Monitoring and Operator Guidance System

    Abstract: The Environmental Monitoring and Operation Guidance System (EMOGS) tool was developed in 1989 to provide a real-time risk analysis for underkeel clearance for the Ohio class submarine while in transit to the Naval Submarine Base at Kings Bay, Georgia. The program computes expected submarine response for input water level, depth, speed, wave, and other input conditions using shallow-water motion transfer functions generated by the strip theory tool, Large Amplitude Motion Program (LAMP). The integration of the new Columbia class submarine into EMOGS required that new transfer functions be developed using LAMP. The LAMP results are to be validated using measured motions from physical model laboratory testing. This report summarizes a laboratory study of the Columbia class submarine response in shallow-water waves. The study was conducted at the US Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, and was done in direct support of the Naval Surface Warfare Center, Carderock Division. These seakeeping tests were performed in a shallow basin with a multi-directional wave generator, with measured still water vessel motions and measured vessel motion in regular and irregular waves of varying height, period, and direction.
  • PUBLICATION NOTICE: Investigation of Shoaling in the Federal Navigation Channel, Waukegan Harbor, Illinois

    Abstract: Persistent and excessive shoaling occurs in the Outer Harbor and Approach Channel of the Waukegan Harbor, Illinois. This report describes a numerical modeling study performed for the US Army Corps of Engineers, Chicago District, to evaluate the existing harbor and 11 structural alternatives for three crest elevations. This report provides details of numerical modeling study, analysis of field data, and estimates of shoaling. The focus of the study is the investigation of a variety of structural solutions intercepting and/or diverting sediments to reduce shoaling in the navigation channel. These include breakwaters, groins, spurs, and structural extensions with varying length and crest elevation connecting to the north beach and existing north breakwater. Estimates of both shoaling volume and height are developed with and without project using an integrated wave-flow-sediment transport numerical modeling approach. Quantitative reduction estimates are provided for each structural alternative investigated.
  • PUBLICATION NOTICE: Quantifying Wave Breaking Shape and Suspended Sediment in the Surf Zone

     Link: http://dx.doi.org/10.21079/11681/35076Report Number: ERDC/CHL TR-19-22Title: Quantifying Wave Breaking Shape and Suspended Sediment in the Surf ZoneBy Patrick J. Dickhudt, Nicholas J. Spore, Katherine L. Brodie, and A. Spicer BakApproved for Public Release; Distribution is Unlimited November 2019Abstract: This technical report describes a