Publication Notices

Notifications of New Publications Released by ERDC

Contact Us

      

  

    866.362.3732

   601.634.2355

 

ERDC Library Catalog

Not finding what you are looking for? Search the ERDC Library Catalog

Results:
Category: Research
Clear
  • Approach for On-Site, On-Demand Contaminant-Removal Devices Enabled by Low-Cost 3D Printing

    Purpose: The purpose of this technical note is to disseminate methods to design and create a 3D device that could be used to determine relative toxicity potential of existing and emerging contaminants of concern in situ for sediment shoaled in federal navigation channels prior to being dredged. This device has the potential to reduce the cost of conventional sediment evaluations conducted prior to dredging operations.
  • Risk-Based Prioritization of Operational Condition Assessments: Trinity River and Willamette River Case Studies

    Abstract: The US Army Corps of Engineers (USACE) operates, maintains, and man-ages over 700 dams and 4,000 miles of levees, providing approximately $257 billion worth of economic benefit to the Nation. USACE employs the Operational Condition Assessment (OCA) process to understand the condition of those assets and allocate resources to minimize risk associated with performance degradation. Understanding risk in flood risk management (FRM) assets requires an understanding of consequence of asset failure from a systemwide FRM watershed perspective and an understanding of likelihood of degradation based on the condition of the low-level components derived from OCA ratings. This research demonstrates a case-study application of a scalable methodology to model the likelihood of a dam performing as expected given the state of its gates and their components. The research team combines this likelihood of degradation with consequences generated by the application of designed simulation experiments with hydrological models to develop risk measures. These risk measures can be developed for all FRM gate assets in order to enable traceable, consistent resource allocation decisions. Two case study applications are provided.
  • Improving Chemical Control of Nonnative Aquatic Plants in Run-of-the-River Reservoirs

    Abstract: Current dam discharge patterns in Noxon Rapids Reservoir reduce concentration and exposure times (CET) of herbicides used for aquatic plant management. Herbicide applications during periods of low dam discharge may increase herbicide CETs and improve efficacy. Applications of rhodamine WT dye were monitored under peak (736 to 765 m3 s−1) and minimum (1.4 to 2.8 m3 s−1) dam discharge patterns to quantify water-exchange processes. Whole-plot dye half-life under minimal discharge was 33 h, a 15-fold increase compared with the dye treatment during peak discharge. Triclopyr concentrations measured during minimum discharge within the treated plot ranged from 214 ± 25 to 1,243 ± 36 μgL−1 from 0 to 48 h after treatment (HAT), respectively. Endothall concentrations measured during minimum discharge in the same plot ranged from 164 ± 78 to 2,195 ± 1,043 μgL−1 from 0 to 48 HAT, respectively. Eurasian water-milfoil (Myriophyllum spicatum L.) occurrence in the treatment plot was 66%, 8%, and 14%during pretreatment, 5 wk after treatment (WAT), and 52 WAT, respectively. Myriophyllum spicatum occurrence in the nontreated plot was 68%, 71%, and 83% during pre-treatment, 5 WAT, and 52 WAT, respectively. Curlyleaf pondweed (Potamogeton crispus L.) occurrence in the treatment plot was 29%, 0%, and 97% during pretreatment, 5 WAT, and 52 WAT, respectively. Potamogeton crispus increased from 24% to 83% at 0 WAT to 52 WAT, respectively, in the nontreated plot. Native species richness declined from 3.3 species per point to 2.1 in the treatment plot in the year of treatment but returned to pretreatment numbers by 52 WAT. Native species richness did not change during the study in the nontreated reference plot. Herbicide applications during periods of low flow can increase CETs and improve control, whereas applications during times of high-water flow would shorten CETs and could result in reduced treatment efficacy.
  • Pilot Project Using Tickler Chains in Lieu of Deflectors at Fire Island Inlet to Moriches Inlet, New York, Borrow Sites

    Abstract: Risk for incidental take of sea turtles and sturgeon exists during hopper dredging operations throughout turtle and sturgeon habitats. Since 1992, draghead deflectors have been the main engineering tool used to minimize incidental hopper dredging takes of sea turtles and are also thought to reduce the chance of sturgeon impingement entrainment. Although reduced, turtle takes still happen annually, and the draghead deflectors reduce dredging productivity, increase fuel usage, and increase costs of operations. As such, there remains a need to research alternative turtle avoidance measures. The non-US dredging industry has used various versions of an engineering control called tickler chains (TC) in lieu of deflectors. If effective, TC could lower dredging costs and increase production in comparison to deflectors. This technical report describes a pilot study where TC were used in lieu of deflectors at Fire Island Inlet, New Y0rk. To the authors’ knowledge, this is the first time since the early 1990s that hopper-dredging has occurred without draghead deflectors along the east coast. No takes were recorded during the pilot study; however, no research was done to determine if sea turtles or sturgeon interacted with the TC. Recommendations for future TC research is provided in this technical report.
  • A Beneficial Placement Decision Support Framework for Wetlands: Case Study for Mobile Harbor, USA

    Abstract: The US Army Corps of Engineers, in the responsibility of maintaining navigational infrastructure, has a unique opportunity to improve coastal wetland resiliency and conserve coastal natural infrastructure through the beneficial use of dredged material for wetland restoration. Opportunities are widespread, and tools such as biophysical models can aid coastal managers in assessing habitat vulnerability and planning restoration. In this study, the Marsh Equilibrium Model was utilized in concert with observed data to predict future conditions and evaluate potential effects of beneficial use of dredged material to restore marshes in Mobile Harbor, Alabama. A range of site conditions and two restoration strategies were considered, and the subsequent impact to dredged material management area volumes evaluated. Results showed that wetland restoration via the thin-layer placement of dredged material can restore marsh elevation to combat sea level rise and conserve fill capacity at dredged material management areas. This approach is demonstrated for adoption nationwide by coastal managers.
  • Autonomous Vehicle Testing: A Survey of Commercial Test Sites and Features

    Abstract: Connected and autonomous technologies are valuable to the Army because of their recognized potential to reduce the number of personnel exposed to threats in forward operations. The successful integration of such technologies has the potential to reduce Soldier deaths and injuries. Automation of routine tasks can also allow warfighters to focus their time on more strategic efforts. Furthermore, a reduction in manpower is expected to proportionally reduce energy use and material supply and resupply demands while bolstering resilience. To achieve these benefits, the reliability, safety, and utility of connected and autonomous systems must be successfully demonstrated in a variety of conditions before widespread adoption. Therefore, the Army needs a realistic testing environment to develop, test, and evaluate emerging technologies. This environment and its supporting infrastructure should provide a variety of terrain, functional areas, and power scenarios and should be able to demonstrate the viability of connected and autonomous technologies on an operational scale. The primary objective of this research was to survey US commercial facilities associated with autonomous vehicle development, testing, and evaluation.
  • Balancing Climate Resilience and Adaptation for Caribbean Small Island Developing States (SIDS): Building Institutional Capacity

    Abstract: Although the Caribbean's Small Island Developing States (SIDS) minimally contribute to global greenhouse gas emissions, they face disproportionate climate risks and are particularly susceptible to systemic economic threats posed by climate change and subsequent increases in climate variability. Historically, strategic programs and investments have sought to develop more robust and adaptive engineered systems to absorb climate threats. However, such initiatives are limited and under-resourced in the SIDS’ context. This article reviews existing climate strategies in the Caribbean and then critically examines current gaps and barriers relating to climate impact knowledge, needs, and implementation. This examination can assist Caribbean SIDS leadership to identify opportunities to transition from a vulnerability-reducing mindset to one of resilience and transformative adaptation to improve long-term economic outlooks, social welfare, and environmental stewardship despite recurring and escalating climate risks.
  • Hazardous and Solid Waste Management Planning in Select African Countries

    Abstract: Managing wastes produced during contingency operations in United States Africa Command (USAFRICOM) locations has historically relied on local contract disposal or open-air burn pits, which have been shown to be harmful to the health of service members. Posture locations that can find alternative ways to manage waste, specifically through contracts with the host country’s waste services, can better protect the health and safety of the warfighter and the native landscapes. African waste systems are complex, decentralized systems with considerable regional variation. The lack of government-funded waste management services leaves many residents with few options for safe disposal. The differing waste disposal strategies are described to offer guidance for military operations in the focus countries of Gabon, Ghana, Kenya, Morocco, Niger, Senegal, and Uganda. Relevant international agreements regulating the flow of hazardous waste across borders that can impact disposal plans are also noted. This report serves as a reference to develop waste management alternatives in the USAFRICOM area of responsibility (AOR). Official Department of Defense and Army regulations should be consulted when devising an integrated waste management plan.
  • User Guidelines on Catchment Hydrological Modeling with Soil Thermal Dynamics in Gridded Surface Subsurface Hydrologic Analysis (GSSHA)

    Abstract: Climate warming is expected to degrade permafrost in many regions of the world. Degradation of permafrost has the potential to affect soil thermal, hydrological, and vegetation regimes. Projections of long-term effects of climate warming on high latitude ecosystems require a coupled representation of soil thermal state and hydrological dynamics. Such a coupled framework was developed to explicitly simulate the soil moisture effects of soil thermal conductivity and heat capacity and its effects on hydrological response. In the coupled framework, the Geophysical Institute Permafrost Laboratory (GIPL) model is coupled with the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model. The new permafrost heat transfer in GSSHA is computed with the GIPL scheme that simulates soil temperature dynamics and the depth of seasonal freezing and thawing by numerically solving a one-dimensional quasilinear heat equation with phase change. All the GIPL input and output parameters and the state variables are set up to be consistent with the GSSHA input-output format and grid distribution data input requirements. Test-case simulated results showed that freezing temperatures reduced soil storage capacity, thereby producing higher peak and lower base flow. The report details the functions and format of required input variables and cards, as a guideline, in GSSHA hydrothermal analysis of frozen soils in permafrost active areas.
  • Building Elevation in Mangrove Communities: Use of Regional Sediment Management to Increase Coastal Wetland Resilience to Sea-Level Rise

    Abstract: This Regional Sediment Management technical report outlines initial steps to implement a proof-of-concept physical model to develop demonstration scale evidence that supports managed wetland transgression through sediment augmentation via a thin-layer placement strategy. The proof-of-concept physical model will evaluate the ability of thin-layer placement to increase elevation and enhance recruitment within coastal scrub mangrove wetlands most vulnerable to sea-level rise. The investigation sought to identify feasible project locations, sediment sources that included beneficial use of dredged material opportunities, and environmentally acceptable construction techniques. Results of this initial step will be used to secure funding to permit, construct, implement, and monitor the proof-of-concept physical model. The results of this initiative will inform and direct management measure development for the ongoing Biscayne Bay Southeastern Everglades Restoration Project, the only coastal component of the Comprehensive Everglades Restoration Plan and the only component with an obligation to increase habitat resilience. Results are applicable to areas throughout the Gulf, Atlantic, and Pacific Coasts of the United States where direct preservation, enhancement, and restoration of mangrove and other coastal wetland communities will build coastal resiliency, reduce storm hazards damage, and create habitat for a variety of fish and wildlife species, particularly as sea levels rise.